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Why Constrained Reinforcement Learning?

» We want agents to perform multiple tasks with some success level
= We can have m reward signals ri(s,a) withi=1,....m
= We want them all to be larger than some value ¢;
» Physical systems are subject to different restrictions
= Level of battery being larger than some value
=- Avoiding obstacles or unsafe portions of the state space
» Most approaches to tackle this problem are either
= Integrating prior-knowledge
= Manual selection of Lagrange multipliers
= Primal-Dual methods

Constrained Reinforcement Learning Framework

» Markov Decision Process with state-action space S x A C R” x RP
» Where the transition probabilities satisfy the Markov property

P(St+1 | {Su; au}ugt) = p(St+1 | St, a@t)
» At each time-step the agent receives m+ 1 rewards rj: xS x A — R
» Consider a family of distributions 7y parameterized by § € R¢
» We want to select the parameters that
= Maximize the expected return while satisfying a set of constraints

HcRd

P; = max Vo(0) = Egaur, thro(st, at)}
S (PI)

subject to Vj(my) £ Es a-r, Zytri(st, at)} >ci,i=1,...,m.
| t=0
» This is the Constrained Reinforcement Learning (CRL) problem

» An approach to solve these problems is to use Primal-Dual methods

Why Primal-Dual methods?

» Why use Primal-Dual methods compared to other approaches?

» Prior domain knowledge
= Project chosen actions to a set that ensures the constraints
X Safety is not guaranteed unless similar transitions have been observed
X Projection might result in sub-optimal operation
» Manual selection of Lagrange Multipliers
X The weight of each constraint needs to be hand tuned
X For each set of penalty coefficients there are different solutions
X It is domain dependent
X Competing resources might lead to training plateaus
» Primal-Dual methods
v Can be been used successfully
v' The dual function is always convex
v Deal directly with the constraints is not more complicated
v Solving the dual can be shown to not be harder than classic RL

Main Contribution

» Constrained Reinforcement Learning has zero duality gap
» Arbitrarily small gap for rich parameterization of the policies

» Solving the dual problem is as good as solving the original problem

Example: Learning Safe Policies

» |n this example we are concerned about safety
» We want to maximize the return while remaining on safe sets S; C S

P(ﬁ{ste&} m) >1-9

t=0
» With high probability forall i=1,..., m
» The previous constraint can be relaxed to be of the form

Z V1 (st € S))
=0

>1—5+V
1—7
» Any policy that satisfies the previous expression

=- Can be shown to be safe until a time horizon
=- Time horizon depends on how close is v t0 ¢

E

Working on the Dual Domain

» Let us define the dual function associated to the CRL problem
m
dh(\) = max Ly(6, A) = max Vo(0) + 21: A Vi(6)
|=

» The dual function is the point-wise maximum of linear functions
= It is a convex function = Easy to solve with SGD
= Danskin’s Theorem guarantees that Va,()\) = V(6*()\))

» |f we have 6*()\) := argmax, Ly(0, \)
= Gradient of the dual function solves the problem

D; = min dy()). (D)

AERT

» There are some limitations of the dual solution
» It only provides a lower bound on the problem (PI)

Py < Dj
» We show that actually the sub-optimality is arbitrarily small

» Solving the primal problem might not be possible
= However it is not more difficult than solving a classic RL problem

Primal-Dual Algorithm

» Dual gradient descent requires the computation of

0*(\) = argmax Ly(6, \)
feRI

» Notice that the Lagrangian can be written as

> A (fo(Sta ar) + y_ Ai(r(se ar) — ci(1 - 7)))}
t=0

i=1

L4(0,)) = E

» Let us define a reward depending on the multipliers

n(s,a) = n(s,a) + Em: Ari(s,a) —ci(1 —7))

» Then the Lagrangian can be written as an expected discounted return

Z v'n(st, at):|
t=0

» Policy Gradient algorithms solve RL problems = Can compute 6*(\)
Ok11 = Ok +19VaLo(Ok, k)
» In parallel the dual step can be run
M1 = [A +mVAL(Ok, k)],
» Typically one needs to chose 7, < 1y SO X\ is approximately constant

Lo(0,\) = E

Dual descent convergence

If policy gradient finds a solution 67(\x) that is 5-suboptimal,
L(OT(Ak), M) + 8 = L(0"(Ak), M)
Then the primal-dual algorithm converges to a neighborhood of D}
dy(Mk) < D + O(n, B, €)
in K < ||Ao — A3||° /(2ne) iterations.

» The previous result is only useful if sub-optimality is not large

The non-parametric Constrained Reinforcement Learning Problem

» Let us consider a non-parametric policy = € P(S)
= Where P(S) is the space of probability measures on (A, B(A))
» In this case the Constrained Reinforcement Learning Problem is

P* 2 max V 2 Bgaor ‘ro(st, @
EB(S) 0(77) s,a _27 O(t t)}

(PII)

subjectto Vi(7) £ Es aur Zytr,-(st, a,)} >c,i=1.....m.
| t=0
» Problem (Pll) upper bounds the parametric problem = P; < P~

= Not solvable, however it is important for theoretical results
» Define the Dual function associated to (PlI)

m
d(\) = max £(0, A) = max Vo(0) + ; A\ Ui(0)
» Then the dual problem is that of finding the best upper bound for (PlI)

D* = min d()). (DI)

AeRT

Zero Duality Gap of Constrained Reinforcement Learning

Theorem: Zero Duality Gap

Suppose that rj is bounded for all i = 0, ..., m and that Slater’s condition
holds for (PIl). Then, strong duality holds for (Pll), i.e., P~ = D~.

» We follow with the reasoning as to why this result holds

» Let us define the perturbation function associated to (Pll)

P€) £ max Vo(r) £ Esaur | Y 'ro(st, ar)
TeP(S) o

subject to V() = Esawn ny’r,-(st, at)} >ci+&,i=1,...,m.
| t=0
(PII)
» If P(¢)is concave = Then zero duality holds (Fenchel-Moreau)
» Define the occupation measure p.(s,a) = (1 —7) > ;o 7'PL(s, a)
» Construct the following problem equivalent to (PII)
P(©)=max |  n(s.a)dp.
SxA

prek (PIl)
subject to / n(s,a)dp, > ci+&,i=1,....,m.
SxA
» The set R is a convex set (Borkar’88)
» Then (PIl) is a convex optimization problem
= In fact it is linear

= It's perturbation function is concave

Almost Zero Duality Gap for Parametric Problems

» For the problem (PIl) we have a duality gap that will depend on the
quality of the parameterization

» We say that a parameterization my Is an e-universal parameterization of
functions = € P(S) if

max / =(als) — m(als)| da < ¢
seES Sy

» This is a requirement on the total variation norm
= Milder than approximation in uniform bound
— Satisfied by RBF networks, RKHS, and deep neural networks

Theorem: Almost Zero Duality Gap for parametric problems

Suppose that r; is bounded for all i = 0, ..., m by constants B, > 0 and
define and B, = max;_1_m B,. Let \* be the solution to the folowing
min-max problem

m
A2 min max V, A [ Vi(r) — ¢ — B— .
& iy max V() 34 (Vi) 0 B )

Then, if the parametrization my is an e—universal parametrization of func-
tions 7 € P(S) and Slater’s condition holds for (Pl), it follows that

€
P2 Dy 2 P* = (B + || Aclly Br) - —
where P* is the optimal value of (PIll), and D; the value of the
parametrized dual problem (D).

» The better the parameterization the smaller is ¢
» The closer we are from solving (PIl) by solving (DI)
» What about infeasible problems?

= If (PI) is infeasible then D} = —oc0

= Right hand side inequality holds trivially

= If infeasible then there is no solution to Problem (I5II) with
¢ = Bre/(1 — ) because 7y is an e-parameterization of P(S)

= Then, A\’ is infinity = Right hand side of the bound holds too

Primal-Dual Convergence

» Combining all the previous results
= Classic convergence of Primal-Dual Algorithm
= Almost zero duality gap

» We can provide a bound on the number of iterations needed to reach a
neighborhood of the primal

Theorem: Convergence of Primal-Dual algorithms

Under the hypothesis of the previous theorem in K < ||A\g — )\guz/(Zne)
iterations the dual solution is such that

P*+ O(n, B,e) > do(Ak) = P — (B, + ||\]||4 Br)

1—7
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Example: Duality Gap
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» We consider a gridworld navigation scenario
= Agent must navigate from left to right
= Red bridge is unsafe while blue bridge is safe
= Constrain the agent to not cross the unsafe bridge with 99%
» In this problem we can compute the global primal minimizer
= E.g., via Dijkstra’s algorithm for a given value of the dual variables
= This allows us to explicitly characterize the duality gap.
» Duality gap effectively vanishes for exact minimization
» Duality gap goes to a neighborhood for a single policy gradient step.
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» Duality gap increases with parametrization coarseness

Example Application: Safe Navigation on Continuous Spaces

» Consider now safe navigation in an obstacle-ridden environment
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» Constrained Reinforcement Learning learns to avoid obstacles
= The value of each obstacle is given by the value of its dual variable
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» Safety is satisfied for all obstacles and reward is maximized
» Compared with a naive approach (black curves)
= Set the weights to the min/max values of the dual variables
= CRL outperforms and methodologically satisfies the constraints

Conclusions

» Constrained RL problems have almost zero duality gap
= The gap depends of the how rich the parameterization is
= In some cases we can achieve zero duality gap
» Solving constrained RL problems is easy
=- As easy as solving unconstrained RL problems
» Primal-Dual converges to the optimal solution
= If the computation of the primal is accurate
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