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Why Constrained Reinforcement Learning?

I We want agents to perform multiple tasks with some success level
⇒We can have m reward signals ri(s,a) with i = 1, . . . ,m
⇒We want them all to be larger than some value ci

I Physical systems are subject to different restrictions
⇒ Level of battery being larger than some value
⇒ Avoiding obstacles or unsafe portions of the state space

I Most approaches to tackle this problem are either
⇒ Integrating prior-knowledge
⇒ Manual selection of Lagrange multipliers
⇒ Primal-Dual methods

Constrained Reinforcement Learning Framework

I Markov Decision Process with state-action space S ×A ⊂ Rn × Rp

I Where the transition probabilities satisfy the Markov property

p(st+1 | {su,au}u≤t) = p(st+1 | st ,at)

I At each time-step the agent receives m + 1 rewards ri : ×S ×A → R
I Consider a family of distributions πθ parameterized by θ ∈ Rd

I We want to select the parameters that
⇒ Maximize the expected return while satisfying a set of constraints

P?
θ , max

θ∈Rd
V0(θ) , Es,a∼πθ

[ ∞∑
t=0

γtr0(st ,at)

]

subject to Vi(πθ) , Es,a∼πθ

[ ∞∑
t=0

γtri(st ,at)

]
≥ ci, i = 1, . . . ,m.

(PI)

I This is the Constrained Reinforcement Learning (CRL) problem
I An approach to solve these problems is to use Primal-Dual methods

Why Primal-Dual methods?

I Why use Primal-Dual methods compared to other approaches?

I Prior domain knowledge
⇒ Project chosen actions to a set that ensures the constraints
7 Safety is not guaranteed unless similar transitions have been observed
7 Projection might result in sub-optimal operation

I Manual selection of Lagrange Multipliers
7 The weight of each constraint needs to be hand tuned
7 For each set of penalty coefficients there are different solutions
7 It is domain dependent
7 Competing resources might lead to training plateaus

I Primal-Dual methods
3 Can be been used successfully
3 The dual function is always convex
3 Deal directly with the constraints is not more complicated
3 Solving the dual can be shown to not be harder than classic RL

Main Contribution
I Constrained Reinforcement Learning has zero duality gap

I Arbitrarily small gap for rich parameterization of the policies

I Solving the dual problem is as good as solving the original problem

Example: Learning Safe Policies

I In this example we are concerned about safety
I We want to maximize the return while remaining on safe sets Si ⊂ S

P

( ∞⋂
t=0

{st ∈ Si}
∣∣∣πθ) ≥ 1− δ

I With high probability for all i = 1, . . . ,m
I The previous constraint can be relaxed to be of the form

E

[ ∞∑
t=0

γt
1 (st ∈ Si)

]
≥ 1− δ + ν

1− γ
I Any policy that satisfies the previous expression

⇒ Can be shown to be safe until a time horizon
⇒ Time horizon depends on how close is ν to δ

Working on the Dual Domain

I Let us define the dual function associated to the CRL problem

dθ(λ) = max
θ
Lθ(θ, λ) = max

θ
V0(θ) +

m∑
i=1

λiVi(θ)

I The dual function is the point-wise maximum of linear functions
⇒ It is a convex function ⇒ Easy to solve with SGD
⇒ Danskin’s Theorem guarantees that ∇dθ(λ) = V (θ?(λ))

I If we have θ?(λ) := argmaxθ Lθ(θ, λ)
⇒ Gradient of the dual function solves the problem

D?
θ , min

λ∈Rm
+

dθ(λ). (DI)

I There are some limitations of the dual solution
I It only provides a lower bound on the problem (PI)

P?
θ ≤ D?

θ

I We show that actually the sub-optimality is arbitrarily small
I Solving the primal problem might not be possible

⇒ However it is not more difficult than solving a classic RL problem

Primal-Dual Algorithm

I Dual gradient descent requires the computation of

θ?(λ) = argmax
θ∈Rd

Lθ(θ, λ)

I Notice that the Lagrangian can be written as

Lθ(θ, λ) = E

[ ∞∑
t=0

γt

(
r0(st ,at) +

m∑
i=1

λi (ri(st ,at)− ci(1− γ))
)]

I Let us define a reward depending on the multipliers

rλ(s,a) = r0(s,a) +
m∑

i=1

λ(ri(s,a)− ci(1− γ))

I Then the Lagrangian can be written as an expected discounted return

Lθ(θ, λ) = E

[ ∞∑
t=0

γtrλ(st ,at)

]
I Policy Gradient algorithms solve RL problems⇒ Can compute θ?(λ)

θk+1 = θk + ηθ∇θLθ(θk , λk)

I In parallel the dual step can be run

λk+1 = [λk + ηλ∇λL(θk , λk)]+

I Typically one needs to chose ηλ� ηθ so λ is approximately constant

Dual descent convergence

If policy gradient finds a solution θ†(λk) that is β-suboptimal,

L(θ†(λk), λk) + β ≥ L(θ?(λk), λk)

Then the primal-dual algorithm converges to a neighborhood of D?
θ

dθ(λk) ≤ D?
θ + O(η, β, ε)

in K ≤ ‖λ0 − λ?θ‖2 /(2ηε) iterations.

I The previous result is only useful if sub-optimality is not large

The non-parametric Constrained Reinforcement Learning Problem

I Let us consider a non-parametric policy π ∈ P(S)
⇒Where P(S) is the space of probability measures on (A,B(A))

I In this case the Constrained Reinforcement Learning Problem is

P? , max
π∈P(S)

V0(π) , Es,a∼π

[ ∞∑
t=0

γtr0(st ,at)

]

subject to Vi(π) , Es,a∼π

[ ∞∑
t=0

γtri(st ,at)

]
≥ ci, i = 1, . . . ,m.

(PII)

I Problem (PII) upper bounds the parametric problem⇒ P?
θ ≤ P?

⇒ Not solvable, however it is important for theoretical results
I Define the Dual function associated to (PII)

d(λ) = max
θ
L(θ, λ) = max

θ
V0(θ) +

m∑
i=1

λiUi(θ)

I Then the dual problem is that of finding the best upper bound for (PII)

D? , min
λ∈Rm

+

d(λ). (DII)

Zero Duality Gap of Constrained Reinforcement Learning

Theorem: Zero Duality Gap
Suppose that ri is bounded for all i = 0, . . . ,m and that Slater’s condition
holds for (PII). Then, strong duality holds for (PII), i.e., P? = D?.

I We follow with the reasoning as to why this result holds

I Let us define the perturbation function associated to (PII)

P(ξ) , max
π∈P(S)

V0(π) , Es,a∼π

[ ∞∑
t=0

γtr0(st ,at)

]

subject to Vi(π) , Es,a∼π

[ ∞∑
t=0

γtri(st ,at)

]
≥ ci + ξi, i = 1, . . . ,m.

(P̃II)
I If P(ξ) is concave ⇒ Then zero duality holds (Fenchel-Moreau)
I Define the occupation measure ρπ(s,a) = (1− γ)∑∞t=0 γ

tpt
π(s,a)

I Construct the following problem equivalent to (P̃II)

P(ξ) = max
ρπ∈R

∫
S×A

r0(s,a)dρπ

subject to
∫
S×A

r0(s,a)dρπ ≥ ci + ξi, i = 1, . . . ,m.
(P̃II

′
)

I The set R is a convex set (Borkar’88)
I Then (P̃II

′
) is a convex optimization problem

⇒ In fact it is linear
⇒ It’s perturbation function is concave

Almost Zero Duality Gap for Parametric Problems

I For the problem (PI) we have a duality gap that will depend on the
quality of the parameterization

I We say that a parameterization πθ is an ε-universal parameterization of
functions π ∈ P(S) if

max
s∈S

∫
A
|π(a|s)− πθ(a|s)| da ≤ ε

I This is a requirement on the total variation norm
⇒ Milder than approximation in uniform bound
⇒ Satisfied by RBF networks, RKHS, and deep neural networks

Theorem: Almost Zero Duality Gap for parametric problems
Suppose that ri is bounded for all i = 0, . . . ,m by constants Bri > 0 and
define and Br = maxi=1...m Bri . Let λ?ε be the solution to the folowing
min-max problem

λ?ε , min
λ∈Rm

+

max
π∈P(S)

V0(π) +
m∑

i=1

λi

(
Vi(π)− ci − Br

ε

1− γ

)
.

Then, if the parametrization πθ is an ε−universal parametrization of func-
tions π ∈ P(S) and Slater’s condition holds for (PI), it follows that

P? ≥ D?
θ ≥ P? − (Br0 + ‖λ?ε‖1 Br)

ε

1− γ,

where P? is the optimal value of (PII), and D?
θ the value of the

parametrized dual problem (DI).

I The better the parameterization the smaller is ε
I The closer we are from solving (PII) by solving (DI)
I What about infeasible problems?

⇒ If (PI) is infeasible then D?
θ = −∞

⇒ Right hand side inequality holds trivially
⇒ If infeasible then there is no solution to Problem (P̃II) with

ξi = Brε/(1− γ) because πθ is an ε-parameterization of P(S)
⇒ Then, λ?ε is infinity ⇒ Right hand side of the bound holds too

Primal-Dual Convergence

I Combining all the previous results
⇒ Classic convergence of Primal-Dual Algorithm
⇒ Almost zero duality gap

I We can provide a bound on the number of iterations needed to reach a
neighborhood of the primal

Theorem: Convergence of Primal-Dual algorithms

Under the hypothesis of the previous theorem in K ≤ ‖λ0 − λ?θ‖2 /(2ηε)
iterations the dual solution is such that

P? + O(η, β, ε) ≥ dθ(λK ) ≥ P? − (Br0 + ‖λ?ε‖1 Br)
ε

1− γ.

Example: Duality Gap
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I We consider a gridworld navigation scenario
⇒ Agent must navigate from left to right
⇒ Red bridge is unsafe while blue bridge is safe
⇒ Constrain the agent to not cross the unsafe bridge with 99%

I In this problem we can compute the global primal minimizer
⇒ E.g., via Dijkstra’s algorithm for a given value of the dual variables
⇒ This allows us to explicitly characterize the duality gap.

I Duality gap effectively vanishes for exact minimization
I Duality gap goes to a neighborhood for a single policy gradient step.
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I Duality gap increases with parametrization coarseness

Example Application: Safe Navigation on Continuous Spaces

I Consider now safe navigation in an obstacle-ridden environment
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I Constrained Reinforcement Learning learns to avoid obstacles
⇒ The value of each obstacle is given by the value of its dual variable
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I Safety is satisfied for all obstacles and reward is maximized
I Compared with a naive approach (black curves)

⇒ Set the weights to the min/max values of the dual variables
⇒ CRL outperforms and methodologically satisfies the constraints

Conclusions

I Constrained RL problems have almost zero duality gap
⇒ The gap depends of the how rich the parameterization is
⇒ In some cases we can achieve zero duality gap

I Solving constrained RL problems is easy
⇒ As easy as solving unconstrained RL problems

I Primal-Dual converges to the optimal solution
⇒ If the computation of the primal is accurate

Thirty-third Conference on Neural Information Processing Systems December 9-14, 2019


