Constrained Reinforcement Learning Has Zero Duality Gap

Santiago Paternain, Luiz F. O. Chamon, Miguel Calvo-Fullana and Alejandro Ribeiro University of Pennsylvania, Philadelphia, USA

Why Constrained Reinforcement Learning?

- ▶ We want agents to perform multiple tasks with some success level
 - \Rightarrow We can have m reward signals $r_i(s, a)$ with i = 1, ..., m
- \Rightarrow We want them all to be larger than some value c_i Physical systems are subject to different restrictions
 - ⇒ Level of battery being larger than some value

 - ⇒ Avoiding obstacles or unsafe portions of the state space
- ► Most approaches to tackle this problem are either
- ⇒ Integrating prior-knowledge
- → Manual selection of Lagrange multipliers
- ⇒ Primal-Dual methods

Constrained Reinforcement Learning Framework

- ▶ Markov Decision Process with state-action space $S \times A \subset \mathbb{R}^n \times \mathbb{R}^p$
- ► Where the transition probabilities satisfy the Markov property

$$p(s_{t+1} \mid \{s_u, a_u\}_{u \le t}) = p(s_{t+1} \mid s_t, a_t)$$

- ▶ At each time-step the agent receives m + 1 rewards $r_i : \times S \times A \rightarrow \mathbb{R}$
- ► Consider a family of distributions π_{θ} parameterized by $\theta \in \mathbb{R}^d$
- ► We want to select the parameters that
- ⇒ Maximize the expected return while satisfying a set of constraints

$$P_{ heta}^{\star} riangleq \max_{ heta \in \mathbb{R}^d} V_0(heta) riangleq \mathbb{E}_{s,a \sim \pi_{ heta}} \left[\sum_{t=0}^{\infty} \gamma^t r_0(s_t, a_t)
ight]$$
 subject to $V_i(\pi_{ heta}) riangleq \mathbb{E}_{s,a \sim \pi_{ heta}} \left[\sum_{t=0}^{\infty} \gamma^t r_i(s_t, a_t)
ight] \geq c_i, i = 1, \dots, m.$ (PI)

- ► This is the Constrained Reinforcement Learning (CRL) problem
- ► An approach to solve these problems is to use Primal-Dual methods

Why Primal-Dual methods?

- ► Why use Primal-Dual methods compared to other approaches?
- ▶ Prior domain knowledge
- ⇒ Project chosen actions to a set that ensures the constraints
- X Safety is not guaranteed unless similar transitions have been observed Projection might result in sub-optimal operation
- Manual selection of Lagrange Multipliers
- The weight of each constraint needs to be hand tuned
- X For each set of penalty coefficients there are different solutions X It is domain dependent
- Competing resources might lead to training plateaus
- ► Primal-Dual methods
- ✓ Can be been used successfully
- ✓ The dual function is always convex
- ✓ Deal directly with the constraints is not more complicated
- ✓ Solving the dual can be shown to not be harder than classic RL

Main Contribution

- Constrained Reinforcement Learning has zero duality gap
- Arbitrarily small gap for rich parameterization of the policies
- Solving the dual problem is as good as solving the original problem

Example: Learning Safe Policies

- ► In this example we are concerned about safety
- ▶ We want to maximize the return while remaining on safe sets $S_i \subset S$

$$P\left(igcap_{t=0}^{\infty}\left\{ oldsymbol{s}_{t}\in\mathcal{S}_{i}
ight\} \left|\pi_{ heta}
ight) \geq1-\delta$$

- ightharpoonup With high probability for all i = 1, ..., m
- ► The previous constraint can be relaxed to be of the form

$$\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \mathbb{1}\left(oldsymbol{s}_t \in \mathcal{S}_i
ight)
ight] \geq rac{\mathsf{1} - \delta +
u}{\mathsf{1} - \gamma}$$

- ► Any policy that satisfies the previous expression
 - ⇒ Can be shown to be safe until a time horizon
 - \Rightarrow Time horizon depends on how close is ν to δ

Working on the Dual Domain

► Let us define the dual function associated to the CRL problem

$$d_{ heta}(\lambda) = \max_{ heta} \mathcal{L}_{ heta}(heta, \lambda) = \max_{ heta} V_0(heta) + \sum_{i=1}^m \lambda_i V_i(heta)$$

- ► The dual function is the point-wise maximum of linear functions
 - \Rightarrow It is a convex function \Rightarrow Easy to solve with SGD
- \Rightarrow Danskin's Theorem guarantees that $\nabla d_{\theta}(\lambda) = V(\theta^{\star}(\lambda))$
- ▶ If we have $\theta^*(\lambda) := \operatorname{argmax}_{\theta} \mathcal{L}_{\theta}(\theta, \lambda)$
 - ⇒ Gradient of the dual function solves the problem

$$D_{ heta}^{\star} riangleq \min_{\lambda \in \mathbb{R}_{+}^{m}} \ d_{ heta}(\lambda).$$
 (DI

- ► There are some limitations of the dual solution
- ► It only provides a lower bound on the problem (PI)

$$extstyle P_{ heta}^{\star} \leq extstyle D_{ heta}^{\star}$$

- ► We show that actually the sub-optimality is arbitrarily small
- ► Solving the primal problem might not be possible
 - ⇒ However it is not more difficult than solving a classic RL problem

Primal-Dual Algorithm

▶ Dual gradient descent requires the computation of

$$heta^{\star}(\lambda) = rgmax \, \mathcal{L}_{ heta}(heta, \lambda)$$

► Notice that the Lagrangian can be written as

$$\mathcal{L}_{ heta}(heta, \lambda) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \left(r_0(s_t, a_t) + \sum_{i=1}^m \lambda_i \left(r_i(s_t, a_t) - c_i(1 - \gamma)\right)\right)\right]$$

► Let us define a reward depending on the multipliers

$$r_{\lambda}(s,a) = r_0(s,a) + \sum_{i=1}^{m} \lambda(r_i(s,a) - c_i(1-\gamma))$$

► Then the Lagrangian can be written as an expected discounted return

$$\mathcal{L}_{ heta}(heta,\lambda) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \emph{r}_{\lambda}(\emph{s}_t,\emph{a}_t)
ight]$$

▶ Policy Gradient algorithms solve RL problems \Rightarrow Can compute $\theta^*(\lambda)$

$$\theta_{k+1} = \theta_k + \eta_\theta \nabla_\theta \mathcal{L}_\theta(\theta_k, \lambda_k)$$

► In parallel the dual step can be run

$$\lambda_{k+1} = [\lambda_k + \eta_\lambda \nabla_\lambda \mathcal{L}(\theta_k, \lambda_k)]_+$$

▶ Typically one needs to chose $\eta_{\lambda} \ll \eta_{\theta}$ so λ is approximately constant

Dual descent convergence

If policy gradient finds a solution $\theta^{\dagger}(\lambda_k)$ that is β -suboptimal,

$$\mathcal{L}(heta^\dagger(\lambda_k),\lambda_k) + eta \geq \mathcal{L}(heta^\star(\lambda_k),\lambda_k)$$

Then the primal-dual algorithm converges to a neighborhood of D_{θ}^{\star}

$$d_{\! heta}(\lambda_{k}) \leq D_{\! heta}^{\star} + O(\eta, eta, arepsilon)$$

in $K \leq \|\lambda_0 - \lambda_\theta^\star\|^2/(2\eta\varepsilon)$ iterations.

► The previous result is only useful if sub-optimality is not large

The non-parametric Constrained Reinforcement Learning Problem

- ▶ Let us consider a non-parametric policy $\pi \in \mathcal{P}(S)$
- \Rightarrow Where $\mathcal{P}(\mathcal{S})$ is the space of probability measures on $(\mathcal{A}, \mathcal{B}(\mathcal{A}))$ ► In this case the Constrained Reinforcement Learning Problem is

$$P^* riangleq \max_{\pi \in \mathcal{P}(\mathcal{S})} \ V_0(\pi) riangleq \mathbb{E}_{s,a \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t r_0(s_t, a_t)
ight]$$
 subject to $\ V_i(\pi) riangleq \mathbb{E}_{s,a \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t r_i(s_t, a_t)
ight] \geq c_i, i = 1, \ldots, m.$

- ▶ Problem (PII) upper bounds the parametric problem $\Rightarrow P_{\theta}^{\star} \leq P^{\star}$ ⇒ Not solvable, however it is important for theoretical results
- ► Define the Dual function associated to (PII)

$$d(\lambda) = \max_{\theta} \mathcal{L}(\theta, \lambda) = \max_{\theta} V_0(\theta) + \sum_{i=1}^{m} \lambda_i U_i(\theta)$$

► Then the dual problem is that of finding the best upper bound for (PII)

$$\mathcal{D}^{\star} riangleq \min_{\lambda \in \mathbb{R}_{+}^{m}} d(\lambda).$$
 (D

Zero Duality Gap of Constrained Reinforcement Learning

Theorem: Zero Duality Gap

Suppose that r_i is bounded for all i = 0, ..., m and that Slater's condition holds for (PII). Then, strong duality holds for (PII), i.e., $P^* = D^*$.

- ► We follow with the reasoning as to why this result holds
- ► Let us define the perturbation function associated to (PII)

$$P(\xi) riangleq \max_{\pi \in \mathcal{P}(\mathcal{S})} \ V_0(\pi) riangleq \mathbb{E}_{s,a \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t r_0(s_t, a_t)
ight]$$
 subject to $\ V_i(\pi) riangleq \mathbb{E}_{s,a \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t r_i(s_t, a_t)
ight] \geq c_i + \xi_i, i = 1, \ldots, m.$

- ▶ If $P(\xi)$ is concave \Rightarrow Then zero duality holds (Fenchel-Moreau)
- ▶ Define the occupation measure $\rho_{\pi}(s, a) = (1 \gamma) \sum_{t=0}^{\infty} \gamma^{t} p_{\pi}^{t}(s, a)$
- ► Construct the following problem equivalent to (PII)

$$P(\xi) = \max_{
ho_{\pi} \in \mathcal{R}} \int_{\mathcal{S} imes \mathcal{A}} r_0(s, a) d
ho_{\pi}$$
 subject to $\int_{\mathcal{S} imes \mathcal{A}} r_0(s, a) d
ho_{\pi} \geq c_i + \xi_i, i = 1, \dots, m.$

- ▶ The set \mathcal{R} is a convex set (Borkar'88)
- ► Then (PII') is a convex optimization problem
 - \Rightarrow In fact it is linear
 - ⇒ It's perturbation function is concave

Almost Zero Duality Gap for Parametric Problems

- ► For the problem (PI) we have a duality gap that will depend on the quality of the parameterization
- \blacktriangleright We say that a parameterization π_{θ} is an ϵ -universal parameterization of functions $\pi \in \mathcal{P}(\mathcal{S})$ if

$$\max_{s \in S} \int_{A} |\pi(a|s) - \pi_{\theta}(a|s)| da \leq \epsilon$$

- ► This is a requirement on the total variation norm
 - ⇒ Milder than approximation in uniform bound
 - ⇒ Satisfied by RBF networks, RKHS, and deep neural networks

Theorem: Almost Zero Duality Gap for parametric problems

Suppose that r_i is bounded for all i = 0, ..., m by constants $B_{r_i} > 0$ and define and $B_r = \max_{i=1...m} B_{r_i}$. Let $\lambda_{\epsilon}^{\star}$ be the solution to the following min-max problem

$$\lambda_{\epsilon}^{\star} \triangleq \min_{\lambda \in \mathbb{R}_{+}^{m}} \max_{\pi \in \mathcal{P}(\mathcal{S})} V_{0}(\pi) + \sum_{i=1}^{m} \lambda_{i} \left(V_{i}(\pi) - c_{i} - B_{r} \frac{\epsilon}{1 - \gamma} \right).$$

Then, if the parametrization π_{θ} is an ϵ -universal parametrization of functions $\pi \in \mathcal{P}(\mathcal{S})$ and Slater's condition holds for (PI), it follows that

$$P^{\star} \geq D_{\theta}^{\star} \geq P^{\star} - (B_{r_0} + \|\lambda_{\epsilon}^{\star}\|_1 B_r) \frac{\epsilon}{1 - \gamma},$$

where P^* is the optimal value of (PII), and D^*_{θ} the value of the parametrized dual problem (DI).

- ▶ The better the parameterization the smaller is ϵ
- ► The closer we are from solving (PII) by solving (DI)
- ► What about infeasible problems?
 - \Rightarrow If (PI) is infeasible then $D_{\theta}^{\star} = -\infty$
- ⇒ Right hand side inequality holds trivially
- \Rightarrow If infeasible then there is no solution to Problem (PII) with
- $\xi_i = B_r \epsilon/(1-\gamma)$ because π_θ is an ϵ -parameterization of $\mathcal{P}(\mathcal{S})$
- \Rightarrow Then, $\lambda_{\epsilon}^{\star}$ is infinity \Rightarrow Right hand side of the bound holds too

Primal-Dual Convergence

- ► Combining all the previous results
- ⇒ Classic convergence of Primal-Dual Algorithm

Theorem: Convergence of Primal-Dual algorithms

- ⇒ Almost zero duality gap
- ► We can provide a bound on the number of iterations needed to reach a neighborhood of the primal

iterations the dual solution is such that $P^* + O(\eta, \beta, \varepsilon) \geq d_{\theta}(\lambda_{\mathcal{K}}) \geq P^* - (B_{r_0} + \|\lambda_{\epsilon}^*\|_1 B_r) \frac{\epsilon}{1 - \gamma}.$

Under the hypothesis of the previous theorem in $K \leq \|\lambda_0 - \lambda_\theta^*\|^2/(2\eta\epsilon)$

Example: Duality Gap

- ► We consider a gridworld navigation scenario
 - ⇒ Agent must navigate from left to right
 - ⇒ Red bridge is unsafe while blue bridge is safe
 - ⇒ Constrain the agent to not cross the unsafe bridge with 99%

► Duality gap goes to a neighborhood for a single policy gradient step.

- ► In this problem we can compute the global primal minimizer ⇒ E.g., via Dijkstra's algorithm for a given value of the dual variables
- ⇒ This allows us to explicitly characterize the duality gap.
- Duality gap effectively vanishes for exact minimization

Duality gap increases with parametrization coarseness

Example Application: Safe Navigation on Continuous Spaces

► Consider now safe navigation in an obstacle-ridden environment

- ► Constrained Reinforcement Learning learns to avoid obstacles
 - ⇒ The value of each obstacle is given by the value of its dual variable

- ► Safety is satisfied for all obstacles and reward is maximized
- Compared with a naive approach (black curves)
 - ⇒ Set the weights to the min/max values of the dual variables
 - ⇒ CRL outperforms and methodologically satisfies the constraints

Conclusions

- Constrained RL problems have almost zero duality gap
 - ⇒ The gap depends of the how rich the parameterization is

⇒ In some cases we can achieve zero duality gap

- Solving constrained RL problems is easy
- ⇒ As easy as solving unconstrained RL problems
- Primal-Dual converges to the optimal solution ⇒ If the computation of the primal is accurate