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Abstract— In this paper, we study the learning of safe policies
in the setting of reinforcement learning problems. This is, we
aim to control a Markov Decision Process (MDP) of which we
do not know the transition probabilities, but we have access to
sample trajectories through experiments. We define safety as the
agent remaining in a desired safe set with high probability for
every time instance. We therefore consider a constrained MDP
where the constraints are probabilistic. Due to the difficulty
of addressing these constraints in a reinforcement learning
framework, we propose an ergodic relaxation of the problem.
Nonetheless, this relaxation is such that we are able to provide
safety guarantees on the resulting policies. To compute these
policies, we resource to a stochastic primal-dual method. We
test the proposed approach in a navigation task in a grid world.
The numerical results show that our algorithm is capable of
dynamically adapting the policy to the environment and the
required safety levels.

I. INTRODUCTION

Markov decision processes (MDPs) [1] are stochastic con-
trol processes used ubiquitously to study robotic systems [2],
control problems [3], and financal models [4]. When these
models are available, optimal control laws—or policies—
can be obtained for these processes using dynamic program-
ing [5]. In contrast, when the underlying MDP is unknown,
the policy needs to be learned from samples of the system.
Typically, this is done by assigning an instantaneous reward
to the system actions that describes the task to be learned.
We then measure the total accumulated reward (known as the
value functions) obtained by the policy to assess its quality
and update it so as to maximize the expected value of this
quantity [6].

A notable drawback of this method is that is not always
suitable for learning dangerous, risky tasks [7]–[9]. Indeed,
many applications require robust control strategies which
also take into account, for instance, the variance of the
accumulated reward to avoid situations in which its value
on a specific realization of the process is considerably
worse than its mean. Consider the case of a self-driving car
deployed in an urban environment. To reach a destination
as fast as possible, the optimal policy may be such that
it makes risky maneuvers, such as driving close to other
cars or crossing pedestrians. Due to the random components
in the vehicle actions and the behavior of other cars and
pedestrians, collision avoidance cannot be guaranteed.

Strategies used to overcome this limitation can be mapped
in four approaches. The first formulates a robust problem in
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which the policy is optimized over its worst case return [7],
[10]. However, these techniques generally yield policies too
conservative for the average scenario and make it hard
to control the trade-off between safety and performance.
The second family of solutions propose to modify the
instantaneous reward function so as to reflect a subjective
measure balancing risk and task learning [9], [11]. Although
this approach makes the risk-performance trade-off more
transparent, it requires this balance to be hand-tuned, an
often time consuming and challenging task that requires
application- and domain-specific expert knowledge. What
is more, the function of the reward is to inform the goal
of the agent, not prior knowledge on how to complete it.
Indeed, “the reward signal is your way of communicating to
the robot what you want it to achieve, not how you want it
achieved” [6, Section 3.2]. The third approach addresses this
issue by modifying the learning procedure instead of the the
reward. By performing safe exploration [12], [13], the agent
learns from safe trajectories and is therefore biased to learn
safe policies.

The last class of solutions addresses the issue of safety
by including explicit constraints in the optimization problem
used to learn the policy [14]–[19]. This is the approach
taken in this paper. These constraints are typically prob-
abilistic in nature, in the sense that they require certain
requirements to hold with some given minimum probability.
These requirements can involve, for instance, lower bounds
on the value function or additional value functions [14]–
[16], thus relaxing the worst case approach from [7], [10],
or arbitrary functions of the state-action space [19], [20].
These constrained learning problems are solved by using
regularization and relaxations so they can be written as linear
programs [14], [18], by leveraging approximate trust region
methods [20], or by applying primal-dual algorithms [19]. A
comprehensive review of this topic can be found in [21].

In this work, we formulate safety constraints by imposing
a lower bound on the probability of remaining in the safe set
for all times. We then propose relaxations for the finite and
infinite time operations (Section II) and provide guarantees
on the ergodic safety of policies learned using our relaxed
formulations (Section III-A). Namely, we show that these
relaxations do not affect the safety level of the finite horizon
problem and establish a safe operation horizon in the infinite
case. Finally, we propose to solve the constrained optimiza-
tion problems using a saddle point algorithm (Section IV)
and conclude with numerical experiments in which we show
that primal-dual methods are able to automatically adjust the
trade-off between goal and safety (Section V).



II. PROBLEM FORMULATION

Our goal is to find safe policies in reinforcement learning
problems. Formally, let S and A be compact sets describing
the states and actions of the agent respectively. A policy
is a distribution πθ(a|s) from which the agent draws its
action a ∈ A when in state s ∈ S. We assume that
this distribution is parametrized by θ ∈ H, where H is
an arbitrary Hilbert space. Every action of the agent has
two consequences. First, it drives the agent to another state
through the transition dynamics defined by the conditional
probability P atst→st+1

(s) := p(st+1 = s | st, at), for time t ∈
N, st, st+1 ∈ S , and at ∈ A. This process is assumed to
satisfy the Markov property P (st+1 = s | (su, au), ∀u ≤
t) = p(st+1 = s | st, at). This system is known as a Markov
decision process. Second, it yields a reward taken from the
function r : S × A → R that informs how good was the
chosen action.

The goal of the agent is to find a parametrization θ of the
policy that maximizes the value function of the MDP, i.e.,
the expected value of the cumulative rewards obtained along
a trajectory. For finite horizons, i.e., when we are concerned
about the evolution of the system until a given time T ≥ 0,
the value function is defined as

VT (θ) = Ea∼πθ(a|s)

[
T∑
t=0

r(st, at)

]
, (1)

where a = {a0, . . . , aT } and s = {s0, . . . , sT }. Alter-
natively, we may consider the infinite horizon problem in
which we want to maximize the expectation of the discounted
cumulative cost

V∞(θ) = Ea∼πθ(a|s)

[ ∞∑
t=0

γtr(st, at)

]
, (2)

where γ ∈ (0, 1) is the discount factor. The parameter γ
defines how myopic the agent is. For small γ, the geometric
sequence vanishes fast and the initial rewards are weighted
more than those in the future. On the other hand, γ close
to one corresponds to an agent that weights rewards at
all times similarly. Although the formulations (1) and (2)
capture different operation principles it is possible to show
their equivalence when the horizon is selected randomly (see
Remark 1).

As we argued in Section I, simply maximizing VT or V∞
in (1) and (2) may lead to unsafe or risky policies. To
formalize this concept, let S0 ⊂ S denote a set of safe states.
Then, we consider the following definition of safety:

Definition 1. We say a policy πθ is (1 − δ)-safe for the
set S0 ⊂ S if for every t ≥ 0 we have that P (st ∈ S0) ≥
1− δ.

Hence, we can write the problem of finding safe policies
in reinforcement learning as the following constrained opti-
mization problem

maximize
θ∈H

VT/∞(θ)

subject to P (st ∈ S0 | πθ) ≥ 1− δ for all t ≥ 0
(3)

Note that because the MDP is not available in reinforce-
ment learning problems, P (st ∈ S0) can only be evaluated
through experiments. Thus, there is no straightforward rela-
tion between θ (i.e., the policy) and the constraint in (3). A
common approach to deal with this issue is to modify the
reward function in (1) and (2) so it is risk aware. Explicitly,
we define

r(st, at) = r̄(st, at) + λ1(st ∈ S0), (4)

where r̄ is the original reward function describing the agent
task, λ > 0 is a safety-related reward, and the indicator
function is such that 1(st ∈ S0) = 1 if st ∈ S0 and
zero otherwise. In other words, the agent receives an extra
reward of λ for respecting the safety specifications. Since
only the reward function was modified, common learning
techniques used to maximize VT and V∞ still apply [6].
Nevertheless, selecting the value of λ is not straightforward.
Besides depending on the values of r̄, it must strike a balance
between safety and task completion. Indeed, large values of λ
can lead to policies that are safe because they do not achieve
the goal (see Section V).

In the next section, we provide an alternative relaxation
of (3) that leads to guaranteed (1 − δ)-safe policies. To
do so, we relax the probability constraint so it has a form
similar to VT /V∞. Thus, we can leverage existing proce-
dures used to maximize (1) and (2) to solve these relaxed
constrained learning problems (Section IV). Additionally, we
derive safety guarantees for the relaxed problem by showing
how much the probabilistic constraint must be tightened to
obtain (1− δ)-safe policies.

Remark 1. In this remark we discuss the equivalence
between the formulations in (1) and (2). This discussion
is inspired in [5, Section 2.3] and in the proofs of [22,
Proposition 2 and 3]. Let us start by considering the finite
horizon value function in (1) with a horizon chosen from a
geometric distribution with parameter γ ∈ (0, 1). Then, it is
possible to write (1) as

E

[
T∑
t=0

r(st, at)

]
= E

[ ∞∑
t=0

1(t ≤ T )r(st, at)

]
. (5)

Under mild assumptions on the reward function it is
possible to exchange the sum and the expectation (see
e.g., [22, Proposition 2] ). Also assuming that the hori-
zon is drawn independently from the trajectory, we can
write E [1(t ≤ T )r(st, at)] = E [1(t ≤ T )]E [r(st, at)].
This yields

E

[
T∑
t=0

r(st, at)

]
=

∞∑
t=0

E [1(t ≤ T )]E [r(st, at)] . (6)

Further notice that the expectation of the indicator function
is the probability of t begin less than T . Since T is drawn
from a geometric distribution it follows that E [1(t ≤ T )] =
γt(1− γ). Thus, (6) reduces to

E

[
T∑
t=0

r(st, at)

]
= (1− γ)

∞∑
t=0

γtE [r(st, at)] . (7)



Exchanging back the expectation and the sum establishes the
equivalence between the two formulations.

III. SAFE POLICY LEARNING

If the transition probabilities of the system were known,
(3) could be solved by directly imposing constraints on
the probabilities, using for instance Model Predictive Con-
trol [23]. However, this is not the scenario in reinforcement
learning problems, where the transition probabilities can
only be accessed through experiments. To overcome this
difficulty, we consider the following relaxations of the chance
constraint in (3). In the case of finite time horizon problems,
we replace the conjunction in (3) by the average safety
probability defined as

UT (θ) =
1

T + 1

T∑
t=0

P (st ∈ S0|πθ). (8)

For the infinite horizon problem, we use the geometrically
discounted average

U∞(θ) =

∞∑
t=0

δtP (st ∈ S0|πθ). (9)

The relaxation (8) is related to the idea of online learn-
ing [24], where instead of satisfying the constraint P (st ∈
S0|πθ) ≥ 1 − δ for all t ≥ 0, we aim to satisfy the
constraint in average. In view of the equivalence between
formulations (1) and (2) discussed in Remark 1, note that the
proposed relaxations are also equivalent when the horizon T
is drawn from a geometric distribution.

Using Definition 1, note from (8) and (9) that UT (θ) > 1−
δ and that U∞(θ) > 1 for any (1− δ)-safe policy. However,
since these are necessary but not sufficient conditions for
safety, we introduce a slack variable ε ≥ 0 to tighten the
constraints. Hence, the safe learning problem is given by

θ∗T , argmax
θ∈H

VT (θ)

subject to UT (θ) ≥ 1− δ + ε,
(10)

for finite horizon and for infinite horizon yields

θ∗∞ , argmax
θ∈H

V∞(θ)

subject to U∞(θ) ≥ 1 +
ε

1− δ ,
(11)

In Section III-A, we establish values of ε that guarantee the
policies obtained from (10) and (11) are (1−δ)-safe policies.

Before proceeding, however, note that (8) and (9) still
involve P (st ∈ S0|πθ), which we can only evaluate through
experiments. However, we can maximize UT and U∞ with-
out explicitly computing this probability. To see why this is
the case, define the reward function rsafe(s, a) = 1(s ∈ S0)
for the indicator function defined as in (4). By noticing
that P (st ∈ S0) = E [1(s ∈ S0)], we immediately obtain
that UT (θ) = VT (θ) and U∞(θ) = V∞(θ) for the reward
function rsafe and the discount factor γ = δ. Hence, we
can maximize UT and U∞ using the same methods used to
maximize value functions [6]. We leverage this observation
in Section IV to learn (1− δ)-safe policies.

A. Safety Guarantees

In this section we establish the safety guarantees of the
policy π∗θ that arises from solving the problems formulated
in (10) and (11). Before doing so, we define Tsafe to be
the set of time indices in which the policy is indeed safe
Tsafe := {t = 0, . . . , T | P (st ∈ S0|πθ)} , with cardinality
Tsafe = |Tsafe|. We define as well Tunsafe = T csafe, with
cardinality Tunsafe = |Tunsafe| = T + 1 − Tsafe. In the next
proposition we bound the fraction of times for which the
policy achieved is not (1− δ)-safe.

Proposition 1. Let π∗θ be a solution of (10) with ε ∈ (0, δ).
Then, the proportion of unsafe times is bounded by

Tunsafe

T + 1
≤ 1− ε

δ
(12)

Proof. Split the summation in (8) in one sum with the safe
times and another one with the unsafe ones

UT (θ∗) =
1

T + 1

T∑
t=0

P (st ∈ S0|π∗θ) (13)

=
1

T + 1

∑
t∈Tsafe

P (st ∈ S0|π∗θ) +
1

T + 1

∑
t∈Tunsafe

P (st ∈ S0|π∗θ),

Notice that by definition for those times in which the policy
is unsafe we have that P (st ∈ S0|π∗θ) ≤ 1−δ. This allows us
to upper bound all the terms in the second sum by 1−δ. The
sum of the safe terms can be always bounded by Tsafe since
each probability is upper bounded by 1. Thus, it follows that

UT (θ∗) ≤ Tsafe

T + 1
+
Tunsafe

T + 1
(1− δ). (14)

Moreover, since Tsafe + Tunsafe = T + 1 it follows that

UT (θ∗) ≤ 1− δ Tunsafe

T + 1
. (15)

For the constraint considered in (10) we have that

1− δ + ε ≤ UT (θ∗) ≤ 1− δ Tunsafe

T + 1
. (16)

This completes the proof of the result. �

The previous results establishes a bound on the proportion
of times where the policy achieved by solving (10) is not
safe. Notice that by setting ε = δ the number of unsafe
times is zero. However, that means that the solution set of
problem (10) has no interior, which violates the constraint
qualification conditions necessary for solving the problem
in practice. The next corollary uses the bound in (12) to
establish conditions under which the solution of (10) is a
(1− δ)-safe policy.

Corollary 1. Assume that for set S0 there exists a 1 −
δ/(T + 1)-safe policy π̃θ. Then, the solution of (10) with
ε > δT/(T + 1) yields a (1− δ)-safe policy.

Proof. Using the bound for the unsafe times derived in
Proposition 1 to write

Tunsafe ≤ (T + 1)
(

1− ε

δ

)
< (T + 1)

(
1− T

T + 1

)
= 1.

(17)



The latter implies that there are no unsafe times as long as the
problem (10) with the choice of epsilon is feasible. Notice,
that for ε > δT/(T + 1), the constraint in (10) reduces to

UT (θ) ≥ 1− δ

T + 1
. (18)

The latter is a feasible problem since there exists a policy
π̃θ that is (1− δ/(T + 1))-safe. This completes the proof of
the corollary. �

The above corollary establishes that it is possible to
achieve a (1 − δ)-safe policy by solving problem (10) with
slack variable δT/(T + 1). In what follows we develop the
analogous results of Proposition 1 and Corollary 1 for the
discounted formulation (11).

Proposition 2. Let π∗θ be a solution of (11) with ε ∈ (0, δ).
Then, the following bound for the unsafe times holds∑

t∈Tunsafe

δt ≤ 1− ε/δ
1− δ . (19)

Proof. Let us split the summation in (9) in one sum with the
safe times and another one with the unsafe ones

U∞(θ∗) =

∞∑
t=0

δtP (st ∈ S0|π∗θ)

=
∑
t∈Tsafe

δtP (st ∈ S0|π∗θ) +
∑

t∈Tunsafe

δtP (st ∈ S0|π∗θ). (20)

As done in the proof of Proposition 1, we can upper bound
the probabilities in the summation of the unsafe times by
1− δ and those in the safe times by 1. Hence it follows that

U∞(θ∗) ≤
∑
t∈Tsafe

δt +
∑

t∈Tunsafe

δt(1− δ). (21)

Notice that the terms δt of both sums add to 1/(1− δ) since
it is the sum of a geometric sequence. Hence, the previous
upper bound reduces to

U∞(θ∗) ≤ 1

1− δ − δ
∑

t∈Tunsafe

δt. (22)

If a policy π∗θ satisfies the constraint in (11) it holds∑
t∈Tunsafe

δt ≤ 1

δ(1− δ) −
1

δ
− ε

δ(1− δ) =
δ − ε
δ(1− δ) . (23)

This completes the proof of the result. �

The previous proposition does not allow us to establish
a bound on the unsafe times but it suggests that either the
unsafe times are concentrated towards the initial times but
there are few or that they happen far away in the future. In
the next corollary we establish a condition for the latter being
the case, which ensures safety until a desired time horizon.

Corollary 2. Assume that there exists a policy π̃θ that is
(1− δT+1(1− δ))-safe for the set S0. Then, the solution of
(11) with ε > δ(1 − δT (1 − δ)) is such that is safe for all
times t ≤ T .

Proof. We will argue at the end of the proof that a (1 −
δT+1(1− δ))-safe policy makes the problem (19) with slack
variable ε > δ(1− δT (1− δ)) feasible. That being the case,
replacing ε in (19) yields∑

t∈Tunsafe

δt < δT . (24)

We next argue that the latter implies that there can not be any
terms t ∈ Tunsafe such that t ≤ T . Notice that if that were the
case, the sum on the left hand side of the previous equation
should be lower bounded by δT . Hence, all t ∈ Tunsafe are
such that t > T . To complete the proof, we need to verify
that the problem (11) is feasible for the slack variable ε >
δ(1 − δT (1 − δ)). Since there exists a policy π̃θ such that
the set S0 is (1− δT+1(1− δ))-safe, we have that

U∞(θ) >
1− δT+1(1− δ)

1− δ . (25)

Adding and subtracting δ on the numerator allows us to write
the previous expression as

U∞(θ) > 1 +
δ(1− δT (1− δ))

1− δ . (26)

Thus, the constraint in (11) is feasible for the slack ε selected.
�

Having established the aforementioned safety guarantees
we set the focus into solving them. In the next section we
propose a primal-dual algorithm to do so.

IV. PRIMAL-DUAL ALGORITHM

We start the development of the algorithm by writing a
relaxation for the problems (10) and (11). Let λ ≥ 0 be a
multiplier and define the corresponding Lagrangian as

L(θ, λ) = V (θ) + λ(U(θ)− s), (27)

where s is the slack for each one of the problems defined.
This slack takes the value s = 1 − δ + ε in the finite time
problem (10) and s = 1+ε/(1−δ) in the discounted infinite
horizon problem (11). We then define the dual function as the
point-wise maximum of the Lagrangian L(θ, λ) with respect
to the primal variable θ. Namely,

g(λ) = max
θ∈H
L(θ, λ). (28)

Since the dual function is a point-wise maximum of linear
functions with respect to λ, it is a convex function. Moreover,
the dual function is an upper bound on the optimal value of
the original problem. To see why this is the case, notice that
by definition of the maximum, we have that

g(λ) ≥ L(θ∗, λ) = V (θ∗) + λ(U(θ∗)− s). (29)

Since θ∗ is the solution of the primal problem, it is feasible as
well, which implies that U(θ∗)−s ≥ 0. Thus g(λ) ≥ V (θ∗),
which in turn means that the dual function is an upper bound
of the optimal problem. Of all possible upper bounds, we



are interested in the tightest one, this is to find λ such to
minimize the dual function

D∗ := min
λ≥0

g(λ). (30)

As previously argued, since g(λ) is a convex function, one
can run gradient descent on the dual variable in order to
solve (30). It follows from Danskin’s theorem [25] that the
gradient of the dual function can be computed by evaluating
the constraints of (10) and (11) at the primal maximizer. For
the k–th iteration of the gradient ascent, the ∇g(λ) can be
computed as ∇g(λk) = U(θk)− s, where

θk = argmax
θ∈H

L(θ, λk). (31)

Hence a feasible solution of problems (10) and (11) can be
computed through the following algorithm consisting of the
primal update (31) followed by the dual gradient descent step

λk+1 = λk − ηλ∇g(λk) = λk − ηλ(U(θk)− s). (32)

A common approach to solve the primal maximization
(31)—at least locally—is to use gradient ascent on the
parametrization of the policy. Alternatively, instead of solv-
ing (31) before taking the dual step, one can update the
primal and dual variable at the same time. That is, update
(32) is computed for the current value of the iterate θk and
the primal variable update is computed as

θk+1 = θk + ηθ∇θL(θk, λk). (33)

The previous expression involves the computation of the
gradient of the expected value of the cumulative reward of
the system under policy πθ(a|s) . To give the expression for
said quantity, we require the following definitions. Let

RλT (s,a) =

T∑
t=0

r(st, at), (34)

Rλ∞(s,a) =

∞∑
t=0

γtr(st, at) (35)

be the cumulative weighted rewards—as in (4)—for both
the finite horizon and infinite horizon formulations. Fur-
ther, define dθ,T (a|s) =

∏T
t=0 πθ(at|st) and dθ,∞(a|s) =∏∞

t=0 πθ(at|st)γ
t

for both formulations. Then the gradient
of the Lagrangian (27) with respect to the parameters of the
policy θ for both formulations yields [6]

∇θL(θ, λk) = Ea∼πθ(a|s)
[
Rλ(s,a)∇θ log (dθ(a|s))

]
,
(36)

where Rλ(s,a) is either (34) or (35), depending on the
formulation being used. As discussed in Section II the main
advantage of the relaxations introduced in (8) and (9) is that
they allow us to compute the gradient of the Lagrangian with
respect to the parametrization of the policy. On the other
hand, a difficulty, in the computation of the dual gradient in
(32) and the primal gradient (36) is the need of computing
expectations with respect to the trajectories of the system. To

Algorithm 1 Stochastic Primal-Dual for Safe Policies
Input: θ0, λ0, T, ηθ, ηλ, δ, ε

1: for k = 0, 1, . . . do
2: Simulate a trajectory with the policy πθk(a|s)
3: Estimate primal gradient ∇̂θL(θk, λk) as in (38)
4: Estimate dual gradient Û(θk)− s as in (37)
5: Update primal θk+1 = θk + ηθ∇̂θL(θk, λk)

6: Update dual λk+1 = λk + ηλ

(
Û(θk)− s

)
7: end for

avoid the need of sampling a large number of trajectories,
one can compute a stochastic approximation

Û(θk) =

T∑
t=0

1(st ∈ S0), (37)

∇̂θL(θk, λk) = Rλ
k

(s,a)∇θ log(dθk(a|s)). (38)

In cases where the horizon is finite, the previous expressions
can be computed without any additional steps and they
yield unbiased estimates of the quantities that they estimate.
However, for the infinite horizon case, one would require
an infinite trajectory for the later to hold. An alternative,
and given the equivalence between the finite and infinite
time horizon problem discussed in Remark 1 is to sample
a horizon from a geometric distribution. By computing the
expressions in (38) and (37) over the randomly drawn hori-
zon the estimates obtained are unbiased [22]. The stochastic
primal-dual algorithm is summarized in Algorithm 1 and
in the next section we show how it can be used to safely
navigate a grid world.

V. NUMERICAL RESULTS

In this section, we study the performance of our proposed
safe primal-dual policy gradient algorithm. For comparison,
we also provide simulations with a classical policy gradient,
in which the reward function has been modified to include
the notion of safety as in (4). The scenario that we consider
is one in which an agent is performing a navigation task. The
high-level description of the navigation task is the following:
two safe areas are connected by a bridge and the objective
of the agent is to go from one safe area to the other without
falling off (i.e., going to the unsafe areas). The specific
map representing this task is shown in Figure 1. The actual
description of the MDP is given by a discrete state space
composed of 15 × 15 states and where each state has four
possible actions (moving up, right, down, and left).
The policy that the agent is aiming to learn is a softmax
policy on the possible actions. More specifically,

πθ(a|s) =
eθs,a∑

a′∈A e
θs,a′

(39)

where, θ = {θs,a}(s,a)∈S×A. In this space, the agent attempts
to learn how to safely navigate from start position sstart =
[4, 13] to goal position sgoal = [11, 3], over a time horizon
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(b) Primal-dual policy gradient.

Fig. 1. Example trajectories for each of the trained policies. The safe
set S0 is represented by the white pixels in the image, while black pixels
represent the unsafe set. The agent starts the navigation task at position
sstart = [4, 13] and attempts to reach the goal position sgoal = [11, 3].

of T = 20 time slots. The reward received by the agent is

r(s, a) = λ1(s ∈ S0) + 1001(s = sgoal)− 101(s 6= sgoal)

for both the policy gradient and the primal-dual policy
gradient. This function indicates that the agent receives a
reward of +100 for reaching the goal and −10 for stepping
anywhere else in the map, and staying in the safe set is
rewarded by λ. While the reward function for both algorithms
is the same, for the classic policy gradient, the value λ is a
system parameter that has to be manually selected. This is
not the case of the primal-dual policy gradient, in which
λ corresponds to the dual variable, which is dynamically
adapted according to the the dual update (32).

We run a simulation over t = 10,000 iterations with a
primal step size of ηθ = 0.001 (for both algorithms) and
a dual step size of ηλ = 0.15 (for the primal-dual policy
gradient). For the primal-dual policy gradient, we also choose
a safety level of 1− δ = 0.95 and a slack of ε = 0.

In Figure 1 we plot a sample trajectory of the trained
policies, for both the policy gradient (Figure 1(a)) and the
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Fig. 2. Convergence of policy gradient. We plot the probability of safety
of a trajectory and the probability of reaching the goal.

primal-dual policy gradient (Figure 1(b)). In the case of the
former, safety needs to be manually specified by the choice of
λ. In this sense, the sample trajectories show the effect of this
parameter. A parameter λ = 0 is equivalent to ignoring the
safety constraint. Hence, the algorithm attempts to reach the
goal completely disregarding the safe “bridge” passing. For
λ = 30, the sample trajectory is safe, as it crosses through the
bridge. On the other hand, for λ = 60, the demanded safety is
so large, that the algorithm stops attempting to reach the goal
(the algorithm is too cautious to explore the environment),
and, as shown by the sample trajectory, it stays in the safe
area without attempting to cross the bridge to reach the goal.

For the case of the primal-dual policy gradient, we do not
need to specify the value of λ, as this is dynamically selected
by the primal-dual policy gradient algorithm. We see that a
sample trajectory of the converged policy is safe. The λ to
which the algorithm converges in this case is λ ≈ 21 and
the behavior is similar to the policy gradient with λ = 30.

Now we will delve deeper into the properties and behavior
of these different policies. While previously we looked at a
single sample trajectory of each one of these policies after
convergence, we now look at how their behavior evolves
during training. Specifically, we are interested in the safety
probability of a trajectory UT (θ) (cf. equation (8)), and the
probability of a trajectory reaching the goal state. We plot the
resulting values for the policy gradient with different rewards
in Figure 2. As previously observed in sample trajectories,
different values of the safety parameter λ lead to different
levels of safety and task accomplishment. For λ = 0,
the probability of safety is the lowest, but the probability
of success is the highest. This behavior is apparent, since
the agent is disregarding any notion of safety and simply
focusing on reaching the goal. At the other extreme, for
λ = 60, the safety probability is close to 1, but this is
due to almost completely disregarding the task, as shown by
the small probability of success. Therefore, safety increases
with λ, while the probability of reaching the goal decrease.
This illustrates that there exist a trade-off between task
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Fig. 3. Convergence of the primal-dual policy gradient. We plot the safety
level of a trajectory and the probability of reaching the goal.

accomplishment and safety (i.e., too safe and the agent will
not accomplish the goal).

A trade-off that can methodically be found by the use of
the primal-dual policy gradient. In Figure 3 we plot the same
results as previously, but for the primal-dual policy gradient.
In this case, we are demanding a safety level of 1−δ = 0.95
with a slack of ε = 0. The plot shows that the algorithm
attains the desired probability of safety while maintaining a
high probability of task accomplishment. Further insight can
be obtained by looking at the value of the dual variable λ as
the algorithm iterates. This is shown in Figure 3(b). We see
that this dual variable converges to λ ≈ 21, a value close to
the λ = 30, previously seen to work for the policy gradient
with manually specified safety rewards. In this sense, the
primal-dual policy gradient attempts to find the required
weight of safety (given by λ) that allows to maintain the
probability of safety demanded 1 − δ. Since the resulting
safety are similar, the resulting λ variables are similar. If,
e.g., one where to demand less safety of the primal-dual
policy gradient, the price of safety would go down, and hence
the dual variables λ would converge to smaller values.

VI. CONCLUSIONS

In this paper, we have studied the problem of learning safe
policies in reinforcement learning problems. More specif-
ically, we have introduced safety into the problem through
probabilistic constraints that we then relax for both finite and
infinite horizons, hence formulating a constrained optimiza-
tion problem. The advantages of the proposed relaxations are
twofold. First, they allow us to compute the primal and dual
gradients of the Lagrangian associated to the optimization
problem. Which can be solved by running a stochastic
primal-dual method. Second, these relaxations do not come
at the cost of safety. In particular we established that the

finite horizon problem remains safe and we established a safe
horizon for the discounted optimization problem. Numerical
results for an agent navigating a grid world show that the
proposed scheme dynamically adapts the cost of safety to
the environment. Compared to previous approaches, our
proposed scheme provides safe policies with guarantees and
a systematic way of achieving them, without being reliant
on the manual tuning of parameters.
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