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Why does greedy sensor selection for Kalman
filtering works when it shouldn't?
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Problem (KFSS)

Select up to s system outputs to estimate its internal states.

minimize MSE(S)
SCO

subject to " |S| < s

> Why the MSE? KF

> NP-hard [Natarajan'95, Zhang'17, Ye'17]
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Greedy KFSS

Definition
Select sensors/outputs one at a time by choosing the one that
most improves estimation at each step.

function GREEDY(q)

Go = 1{}

for j=1,...,q
u = argmin MSE (G;_; U {v})
veO\G -1
9j = GjrU{u}
end
end
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Greedy KFSS

Definition
Select sensors/outputs one at a time by choosing the one that
most improves estimation at each step.

function GREEDY(q)

Go = 1{}

» Low complexity

forj=1,...,¢q » Sequential
u = argmin MSE (G;_1 U {v})
vEO\Gj1 » Near-optimal for
G; = Gj—1rU{u} supermodular
end objectives
end
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Problem (KFSS)

Select up to s system outputs to estimate its internal states.

minimize MSE(S)
SCO

subject to  |S]| < s

» Why the MSE? KF
» NP-hard [NatagglamQ%) Zhang'17, Ye'l7]

» Estimation.MSE is not supermodular
[Tzodmas't6, Olshevsky'16, Singh'17, Zhang'17]

m Use a supermodular surrogate (e.g., log det)
[Joshi'09, Shamaiah'10, Tzoumas'16]
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MSE(G) — MSE(S*)
MSE(f) — MSE(S*)

Greedy KFSS is near-optimal
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Kalman filtering sensor selection
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Kalman filtering

Tp+1 = Fap + wy
Yy = Hxp + vy,
wy, ~ N(0,001) vy, ~ N(0,051) xo~ N (2o, IIp)

Problem (Filtering)
Estimate x;, based on outputsup to time k, i.e.,

&= E[zk | {y;}j<k]

Solution (Kalman filter)

xp = Fap_1 + Ky, [y, — HF 2]
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Kalman filtering

Tp+1 = Fap + wy
Yy = Hxp + vy,
wy, ~ N(0,001) vy, ~ N(0,051) xo~ N (2o, IIp)

Problem (Filtering)
Estimate x;, based on outputsin'S C O up to time k, i.e.,

Zp=E [z | {(y))s}j<k]

Solution (Kalman filter)
Z1(S) = F2_1(S)+ Ky [(yr)s — HsFxp_1(S)]
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Problem (KF sensor selection)

Find S C O, |S| < s, that minimizes the estimation MSE
m—1
inimi 0, MSE, (S
mllréﬁrgnslze jgo y 0+ (S)

» Myopic sensor selection: m =1
» Final estimation MSE: 6; =0 for j <m — 1 and 6,,_1 =1
» Exponentially weighted error: 6; = P p <
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Problem (KF sensor selection)

Find S C O, |S| < s, that minimizes the estimation MSE
m—1
inimi 0:Tr [Ppy:(S
migimize 2::0 ;T [P 5(S)]

where

Py(S)= | FP\(S)FT +0,140,>)  hih!

~- ;
Pl €S i-th sensor
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(Approximate) supermodularity
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Supermodularity

Definition (Supermodularity)
For ACBCOandueO\B

fFA) = fAU{u}) = f (B) < f (BU{u})

o) e (@R |G

“diminishing returns”
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Greedy supermodular minimization

Theorem ([NWF'78])
Let 8* be the optimal solution of the problem

L S
m1|r§1‘1§nslze fAS)

and G be its greedy solution. If f is (i) monotone decreasing and
(ii) supermodular, then

f(9)—1(57)
f0) = f(5%)

<e 1x0.37.
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Greedy supermodular minimization

Theorem ([NWF'78])
If f is (i) monotone decreasing and (i) supermodular, then

f(9) - f(57)
f0) = 1(5%)

<elax037
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a-supermodularity

Definition (Supermodularity)
ForACBCOandueO\B

FAU{u}) = f(A) < F (BU{u}) — f(B)
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a-supermodularity

Definition (a-supermodularity)
ForACBCO, ueO\B,and a >0

fAU{u}) — f(A) <a [ f(BU{u}) - f(B)

> If a > 1: f is supermodular

> If a <1: f is approximately supermodular

Chamon, Pappas, Ribeiro The MSE in KF Sensor Selection is Approximately Supermodular



Greedy a-supermodular minimization

Theorem ([Chamon-Ribeiro'16])
Let §* be the solution of the problem

o S
m1|%1\1§nslze fAS)

and G, be the g-th iteration of a greedy solution. If f is
(i) monotone decreasing and (ii) a-supermodular, then

f(gq) — f(S*) < e—aq/s
fF@) = f(8) '
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Greedy a-supermodular minimization

Theorem ([Chamon-Ribeiro'16])

If f is (i) monotone decreasing and (ii) a-supermodular, then

f(gq) - f(S*) < e—aq/s
fO0) = f(8%) ™ '

» For ¢ = s'and'aw="1, we recover the classical e~! result

» If < 1, then e~! is recovered for g = a~!s
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a for KFSS

» What is « for KFSS? Combinatorial problem

- MSE (A) =~ MSE (AU {u})

~ ACBCO MSE(B) — MSE (BU {u})
ueO\B

Chamon, Pappas, Ribeiro The MSE in KF Sensor Selection is Approximately Supermodular



a for KFSS

Theorem ([Chamon-Pappas-Ribeiro’17])
The objective of KFSS is a-supermodular with

L<k<l+m—1 \pmax [Pk:[k—l}

1

Py(O) =(Pyjj-1 +0,’"H"H) "~

Pyp—1=FP,_\F" + 0.1

» g2 02 and small K(F) = a~1
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a for KFSS

» n = 100 states and H =T
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Near-optimality of greedy KFSS
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a for KFSS

» n =100 states and H =T
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Conclusion

Why does greedy KFSS works so well?

» The MSE in KFSS is not supermodular, but almost

» Greedy KFSS is efficient and has a guaranteed near-optimal
performance
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