

The Mean Square Error in Kalman Filtering Sensor Selection is Approximately Supermodular

Luiz F. O. Chamon, George J. Pappas and Alejandro Ribeiro

> CDC 2017 December 12th, 2017

Why does greedy sensor selection for Kalman filtering works when it shouldn't?

Problem (KFSS)

Select up to s system outputs to estimate its internal states.

- Why the MSE? KF
- ► NP-hard [Natarajan'95, Zhang'17, Ye'17]

Greedy KFSS

Definition

Select sensors/outputs one at a time by choosing the one that most improves estimation at each step.

```
\begin{aligned} & \textbf{function} \ \operatorname{GREEDY}(q) \\ & \mathcal{G}_0 = \{\} \\ & \textbf{for} \ j = 1, \dots, q \\ & u = \underset{v \in \mathcal{O} \setminus \mathcal{G}_{j-1}}{\operatorname{argmin}} \ \operatorname{MSE}\left(\mathcal{G}_{j-1} \cup \{v\}\right) \\ & \mathcal{G}_j = \mathcal{G}_{j-1} \cup \{u\} \\ & \textbf{end} \end{aligned}
```

Greedy KFSS

Definition

Select sensors/outputs one at a time by choosing the one that most improves estimation at each step.

$$\begin{aligned} & \text{function } \text{Greedy}(q) \\ & \mathcal{G}_0 = \{\} \\ & \text{for } j = 1, \dots, q \\ & u = \underset{v \in \mathcal{O} \setminus \mathcal{G}_{j-1}}{\operatorname{argmin }} \text{MSE}\left(\mathcal{G}_{j-1} \cup \{v\}\right) \\ & \mathcal{G}_j = \mathcal{G}_{j-1} \cup \{u\} \\ & \text{end} \end{aligned}$$

- Low complexity
- Sequential
- Near-optimal for supermodular objectives

Problem (KFSS)

Select up to s system outputs to estimate its internal states.

- ▶ Why the MSE? KF
- ▶ NP-hard [Natarajan'95, Zhang'17, Ye'17]
- Estimation MSE is not supermodular
 [Tzoumas 16, Olshevsky'16, Singh'17, Zhang'17]
 - Use a supermodular surrogate (e.g., log det) [Joshi'09, Shamaiah'10, Tzoumas'16]

Greedy KFSS

Greedy KFSS

Greedy KFSS is near-optimal

Kalman filtering sensor selection

(Approximate) supermodularity

Near-optimality of gleedy KFSS

Kalman filtering

$$egin{aligned} oldsymbol{x}_{k+1} &= oldsymbol{F} oldsymbol{x}_k + oldsymbol{w}_k \ oldsymbol{y}_k &= oldsymbol{H} oldsymbol{x}_k + oldsymbol{v}_k \ oldsymbol{w}_k \sim \mathcal{N}(oldsymbol{0}, \sigma_v^2 oldsymbol{I}) & oldsymbol{v}_k \sim \mathcal{N}(oldsymbol{oldsymbol{z}}, \Pi_0) \end{aligned}$$

Problem (Filtering)

Estimate x_k based on outputs up to time k, i.e.,

$$\hat{oldsymbol{x}}_k = \mathbb{E}\left[oldsymbol{x}_k \mid \{oldsymbol{y}_j\}_{j \leq k}
ight]$$

Solution (Kalman filter)

$$\hat{\boldsymbol{x}}_k = \boldsymbol{F}\hat{\boldsymbol{x}}_{k-1} + \boldsymbol{K}_k \left[\boldsymbol{y}_k - \boldsymbol{H} \boldsymbol{F}\hat{\boldsymbol{x}}_{k-1} \right]$$

Kalman filtering

$$egin{aligned} oldsymbol{x}_{k+1} &= oldsymbol{F} oldsymbol{x}_k + oldsymbol{w}_k \ oldsymbol{y}_k &= oldsymbol{H} oldsymbol{x}_k + oldsymbol{v}_k \ oldsymbol{w}_k \sim \mathcal{N}(oldsymbol{0}, \sigma_v^2 oldsymbol{I}) & oldsymbol{v}_k \sim \mathcal{N}(oldsymbol{oldsymbol{z}}, \Pi_0) \end{aligned}$$

Problem (Filtering)

Estimate x_k based on outputs in $S \subseteq \mathcal{O}$ up to time k, i.e.,

$$\hat{oldsymbol{x}}_{oldsymbol{k}}
eq \mathbb{E}\left[oldsymbol{x}_{k} \mid \{(oldsymbol{y}_{j})_{\mathcal{S}}\}_{j \leq k}
ight]$$

Solution (Kalman filter)

$$\hat{oldsymbol{x}}_k(\mathcal{S}) = oldsymbol{F}\hat{oldsymbol{x}}_{k-1}(\mathcal{S}) + oldsymbol{K}_k\left[(oldsymbol{y}_k)_{\mathcal{S}} - oldsymbol{H}_{\mathcal{S}}oldsymbol{F}\hat{oldsymbol{x}}_{k-1}(\mathcal{S})
ight]$$

Problem (KF sensor selection)

Find $S \subseteq \mathcal{O}$, $|S| \leq s$, that minimizes the estimation MSE

$$\underset{|\mathcal{S}| \leq s}{\text{minimize}} \quad \sum_{j=0}^{m-1} \theta_j \mathsf{MSE}_{\ell+j}(\mathcal{S})$$

- Myopic sensor selection: m=1
- ▶ Final estimation MSE: $\theta_j = 0$ for j < m-1 and $\theta_{m-1} = 1$
- Exponentially weighted error: $\theta_j = \rho^{m-1-j}$, $\rho < 1$

Problem (KF sensor selection)

Find $S \subseteq \mathcal{O}$, $|S| \leq s$, that minimizes the estimation MSE

$$\underset{|\mathcal{S}| \leq s}{\text{minimize}} \quad \sum_{j=0}^{m-1} \theta_j \operatorname{Tr} \left[\mathbf{\textit{P}}_{\ell+j}(\mathcal{S}) \right]$$

where

$$\boldsymbol{P}_{k}(\mathcal{S}) = \left(\underbrace{\boldsymbol{F} \boldsymbol{P}_{k-1}(\mathcal{S}) \boldsymbol{F}^{T} + \sigma_{w}^{2} \boldsymbol{I}}_{\boldsymbol{P}_{k|k-1}} + \sigma_{v}^{-2} \sum_{i \in \mathcal{S}} \underbrace{\boldsymbol{h}_{i} \boldsymbol{h}_{i}^{T}}_{i\text{-th sensor}} \right)^{-1}$$

Kalman filtering sensor selection

(Approximate) supermodularity

Near-optimality of greedy KFSS

Supermodularity

Definition (Supermodularity)

For $\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{O}$ and $u \in \mathcal{O} \setminus \mathcal{B}$

$$f(\mathcal{A}) - f(\mathcal{A} \cup \{u\}) \ge f(\mathcal{B}) - f(\mathcal{B} \cup \{u\})$$

$$f\left(\begin{array}{c} \mathbf{A} \end{array}\right) - f\left(\begin{array}{c} \mathbf{A} \end{array}\right) \geq f\left(\begin{array}{c} \mathbf{A} \end{array}\right) - f\left(\begin{array}{c} \mathbf{A} \end{array}\right)$$

"diminishing returns"

Greedy supermodular minimization

Theorem ([NWF'78])

Let \mathcal{S}^{\star} be the optimal solution of the problem

$$\begin{array}{ll}
\text{minimize} & f(\mathcal{S}) \\
|\mathcal{S}| \leq s
\end{array}$$

and $\mathcal G$ be its greedy solution. If f is (i) monotone decreasing and (ii) supermodular, then

$$\frac{f(\mathcal{G}) - f(\mathcal{S}^*)}{f(\emptyset) - f(\mathcal{S}^*)} \le e^{-1} \approx 0.37.$$

Greedy supermodular minimization

Theorem ([NWF'78])

If f is (i) monotone decreasing and (ii) supermodular, then

$$\frac{f(\mathcal{G}) - f(\mathcal{S}^*)}{f(\emptyset) - f(\mathcal{S}^*)} \le e^{-1} \approx 0.37.$$

α -supermodularity

Definition (Supermodularity)

For
$$\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{O}$$
 and $u \in \mathcal{O} \setminus \mathcal{B}$

$$f(A \cup \{u\}) - f(A) \le f(B \cup \{u\}) - f(B)$$

α -supermodularity

Definition (α -supermodularity)

For $A \subseteq B \subseteq \mathcal{O}$, $u \in \mathcal{O} \setminus \mathcal{B}$, and $\alpha \geq 0$

$$f(A \cup \{u\}) - f(A) \le \alpha \left[f(B \cup \{u\}) - f(B) \right]$$

- ▶ If $\alpha \ge 1$: f is supermodular
- If $\alpha < 1$: f is approximately supermodular

Greedy α -supermodular minimization

Theorem ([Chamon-Ribeiro'16])

Let \mathcal{S}^{\star} be the solution of the problem

$$\begin{array}{ll}
\text{minimize} & f(\mathcal{S}) \\
|\mathcal{S}| \leq s
\end{array}$$

and G_q be the q-th iteration of a greedy solution. If f is (i) monotone decreasing and (ii) α -supermodular, then

$$\frac{f(\mathcal{G}_q) - f(\mathcal{S}^*)}{f(\emptyset) - f(\mathcal{S}^*)} \le e^{-\alpha q/s}.$$

Greedy α -supermodular minimization

Theorem ([Chamon-Ribeiro'16])

If f is (i) monotone decreasing and (ii) α -supermodular, then

$$\frac{f(\mathcal{G}_q) - f(\mathcal{S}^*)}{f(\emptyset) - f(\mathcal{S}^*)} \le e^{-\alpha q/s}.$$

- For q=s and $\alpha=1$, we recover the classical e^{-1} result
- ▶ If α < 1, then e^{-1} is recovered for $q = \alpha^{-1}s$

 \blacktriangleright What is α for KFSS? Combinatorial problem

$$\alpha = \min_{\substack{\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{O} \\ u \in \mathcal{O} \backslash \mathcal{B}}} \frac{\mathsf{MSE}\left(\mathcal{A}\right) - \mathsf{MSE}\left(\mathcal{A} \cup \{u\}\right)}{\mathsf{MSE}\left(\mathcal{B}\right) - \mathsf{MSE}\left(\mathcal{B} \cup \{u\}\right)}$$

Theorem ([Chamon-Pappas-Ribeiro'17])

The objective of KFSS is α -supermodular with

$$\alpha \geq \min_{\ell \leq k \leq \ell + m - 1} \frac{\lambda_{\textit{min}}\left[\textit{\textbf{P}}_{k}(\mathcal{O})\right]}{\lambda_{\textit{max}}\left[\textit{\textbf{\textbf{P}}}_{k|k-1}\right]}$$

$$egin{aligned} oldsymbol{P}_k(\mathcal{O}) &= \left(oldsymbol{P}_{k|k-1} + \sigma_v^{-2} oldsymbol{H}^T oldsymbol{H}
ight)^{-1} \ oldsymbol{P}_{k|k-1} &= oldsymbol{F} oldsymbol{P}_{k-1} oldsymbol{F}^T + \sigma_w^2 oldsymbol{I} \end{aligned}$$

$$lacksquare$$
 $\sigma_v^2\gg\sigma_w^2$ and small $\kappa(\pmb{F})\ \Rightarrow lphapprox 1$

ightharpoonup n=100 states and $m{H}=m{I}$

Kalman filtering sensor selection

(Approximate) supermodularity

Near-optimality of greedy KFSS

ightharpoonup n=100 states and $m{H}=m{I}$

Conclusion

Why does greedy KFSS works so well?

- ► The MSE in KFSS is not supermodular, but almost
- Greedy KFSS is efficient and has a guaranteed near-optimal performance

The Mean Square Error in Kalman Filtering Sensor Selection is Approximately Supermodular

Luiz F. O. Chamon, George J. Pappas and Alejandro Ribeiro

More details: http://www.seas.upenn.edu/ \sim luizf