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Goal

Why does greedy sensor selection for Kalman
filtering works when it shouldn’t?
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KFSS

Problem (KFSS)

Select up to s system outputs to estimate its internal states.

minimize
S⊆O

MSE(S)

subject to |S| ≤ s

I Why the MSE? KF

I NP-hard [Natarajan’95, Zhang’17, Ye’17]
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Greedy KFSS

Definition
Select sensors/outputs one at a time by choosing the one that
most improves estimation at each step.

function Greedy(q)

G0 = {}
for j = 1, . . . , q

u = argmin
v∈O\Gj−1

MSE (Gj−1 ∪ {v})

Gj = Gj−1 ∪ {u}
end

end

I Low complexity

I Sequential

I Near-optimal for
supermodular
objectives
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KFSS

Problem (KFSS)

Select up to s system outputs to estimate its internal states.

minimize
S⊆O

MSE(S)

subject to |S| ≤ s

I Why the MSE? KF

I NP-hard [Natarajan’95, Zhang’17, Ye’17]

I Estimation MSE is not supermodular
[Tzoumas’16, Olshevsky’16, Singh’17, Zhang’17]

Use a supermodular surrogate (e.g., log det)
[Joshi’09, Shamaiah’10, Tzoumas’16]
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Greedy KFSS
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Greedy KFSS is near-optimal
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Kalman filtering sensor selection

(Approximate) supermodularity

Near-optimality of greedy KFSS
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Kalman filtering

xk+1 = Fxk + wk

yk = Hxk + vk

wk ∼ N (0, σ2wI) vk ∼ N (0, σ2vI) x0 ∼ N (x̄0,Π0)

Problem (Filtering)

Estimate xk based on outputs up to time k, i.e.,

x̂k = E [xk | {yj}j≤k]

Solution (Kalman filter)

x̂k = F x̂k−1 + Kk [yk −HFx̂k−1]
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Kalman filtering

xk+1 = Fxk + wk

yk = Hxk + vk

wk ∼ N (0, σ2wI) vk ∼ N (0, σ2vI) x0 ∼ N (x̄0,Π0)

Problem (Filtering)

Estimate xk based on outputs in S ⊆ O up to time k, i.e.,

x̂k = E [xk | {(yj)S}j≤k]

Solution (Kalman filter)

x̂k(S) = F x̂k−1(S) + Kk [(yk)S −HSF x̂k−1(S)]
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KFSS

Problem (KF sensor selection)

Find S ⊆ O, |S| ≤ s, that minimizes the estimation MSE

minimize
|S|≤s

m−1∑
j=0

θjMSE`+j(S)

where

I Myopic sensor selection: m = 1

I Final estimation MSE: θj = 0 for j < m− 1 and θm−1 = 1

I Exponentially weighted error: θj = ρm−1−j , ρ < 1
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KFSS

Problem (KF sensor selection)

Find S ⊆ O, |S| ≤ s, that minimizes the estimation MSE

minimize
|S|≤s

m−1∑
j=0

θj Tr [P`+j(S)]

where

Pk(S) =

FPk−1(S)F T + σ2wI︸ ︷︷ ︸
Pk|k−1

+σ−2v
∑
i∈S

hih
T
i︸ ︷︷ ︸

i-th sensor


−1
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Kalman filtering sensor selection

(Approximate) supermodularity

Near-optimality of greedy KFSS
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Supermodularity

Definition (Supermodularity)

For A ⊆ B ⊆ O and u ∈ O \ B

f (A)− f (A ∪ {u}) ≥ f (B)− f (B ∪ {u})

“diminishing returns”
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Greedy supermodular minimization

Theorem ([NWF’78])

Let S? be the optimal solution of the problem

minimize
|S|≤s

f (S)

and G be its greedy solution. If f is (i) monotone decreasing and
(ii) supermodular, then

f(G)− f(S?)
f(∅)− f(S?)

≤ e−1 ≈ 0.37.
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α-supermodularity

Definition (Supermodularity)

For A ⊆ B ⊆ O and u ∈ O \ B

, and α ≥ 0

f (A ∪ {u})− f (A) ≤ f (B ∪ {u})− f (B)

I If α ≥ 1: f is supermodular

I If α < 1: f is approximately supermodular
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α-supermodularity

Definition (α-supermodularity)

For A ⊆ B ⊆ O, u ∈ O \ B, and α ≥ 0

f (A ∪ {u})− f (A) ≤ α
[
f (B ∪ {u})− f (B)

]

I If α ≥ 1: f is supermodular

I If α < 1: f is approximately supermodular
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Greedy α-supermodular minimization

Theorem ([Chamon-Ribeiro’16])

Let S? be the solution of the problem

minimize
|S|≤s

f (S)

and Gq be the q-th iteration of a greedy solution. If f is
(i) monotone decreasing and (ii) α-supermodular, then

f(Gq)− f(S?)
f(∅)− f(S?)

≤ e−αq/s.
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Greedy α-supermodular minimization

Theorem ([Chamon-Ribeiro’16])

If f is (i) monotone decreasing and (ii) α-supermodular, then

f(Gq)− f(S?)
f(∅)− f(S?)

≤ e−αq/s.

I For q = s and α = 1, we recover the classical e−1 result

I If α < 1, then e−1 is recovered for q = α−1s
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α for KFSS

I What is α for KFSS? Combinatorial problem

α = min
A⊆B⊆O
u∈O\B

MSE (A)−MSE (A ∪ {u})
MSE (B)−MSE (B ∪ {u})
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α for KFSS

Theorem ([Chamon-Pappas-Ribeiro’17])

The objective of KFSS is α-supermodular with

α ≥ min
`≤k≤`+m−1

λmin [Pk(O)]

λmax

[
Pk|k−1

]
Pk(O) =

(
Pk|k−1 + σ−2v HTH

)−1
Pk|k−1 = FPk−1F

T + σ2wI

I σ2v � σ2w and small κ(F ) ⇒ α ≈ 1
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α for KFSS

I n = 100 states and H = I

0

0.25

1

0.75

0.5

-20 -10 0 10 20 0 0.2 0.4 0.6 1

(dB)
0.8

Chamon, Pappas, Ribeiro The MSE in KF Sensor Selection is Approximately Supermodular 19

luizf
@seas.u

penn.edu



Kalman filtering sensor selection

(Approximate) supermodularity

Near-optimality of greedy KFSS
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α for KFSS

I n = 100 states and H = I
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Conclusion

Why does greedy KFSS works so well?

I The MSE in KFSS is not supermodular, but almost

I Greedy KFSS is efficient and has a guaranteed near-optimal
performance
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