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Abstract— This work considers the problem of selecting sen-
sors in large scale system to minimize the state estimation mean-
square error (MSE). More specifically, it leverages the concept
of approximate supermodularity to derive near-optimality cer-
tificates for greedy solutions of this problem in the context
of Kalman filtering. It also shows that in typical application
scenarios, these certificates approach the typical 1/e guaran-
tee. These performance bounds are important because sensor
selection problems are in general NP-hard. Hence, their solution
can only be approximated in practice even for moderately large
problems. A common way of deriving these approximations is
by means of convex relaxations. These, however, come with no
performance guarantee. Another approach uses greedy search,
although also in this case typical guarantees do not hold since
the MSE is neither submodular nor supermodular. This issue
is commonly addressed by using a surrogate supermodular
figure of merit, such as the log det. Unfortunately, this is not
equivalent to minimizing the MSE. This work demonstrates
that no change to the original problem is needed to obtain
performance guarantees.

I. INTRODUCTION

We consider the problem of observing large scale systems
in which sensing more than a reduced fraction of their output
variables is impractical. Specifically, we are interested in
finding a subset of the system outputs that minimizes the
state estimation mean-square error (MSE) subject to some
sensing budget. This problem is particularly critical in dis-
tributed system where power and communication constraints
additionally limit the number of sensors available [1]–[3].
It can be found in applications such as target tracking,
field monitoring, power allocation, and biological systems
analysis [4]–[9].

In general, sensor selection is an NP-hard problem [10]–
[16]. In fact, even finding the smallest subset of outputs that
make the system observable is NP-hard [17]. Minimizing
the state estimation MSE under a sensor budget constraint
is therefore intractable even for moderately large systems.
Thus, we must turn to approximate solutions.

A common approach is to cast sensor selection as an
integer program and approximate its solution using a convex
relaxation of its constraints [16], [18]–[23]. It typically
includes a sparsity promoting regularization and obtains a
sensing set by either rounding or some randomized pro-
cedure. Although these methods are practical and make it
straightforward to include additional constraints [19], they
do not have approximation guarantees.

Another avenue relies on approximation algorithms from
discrete optimization [8], [24]. Here, greedy minimization
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remains ubiquitous due to its low complexity and near-
optimal guarantees when the cost function is supermodular.
This, however, is not the case for the MSE. Counter-examples
in the context of control theory can be found in [14]–
[16]. This issue is typically addressed by using a surrogate
supermodular estimation error measure, such as the log det,
or some information-theoretic measure relating the selected
output set and its complement [10], [13], [20], [25]–[27].
Though effective, there is no direct relation between the
estimation MSE and these cost functions, so it makes sense
to take a page out of Tukey’s book and try to solve the “right
problem” [28].

This work therefore sets out to provide theoretical perfor-
mance guarantees on greedily selecting sensors to minimize
the state estimation MSE. To do so, we leverage the con-
cept of α-supermodularity introduced in [29] and (i) derive
bounds on the α-supermodularity of the state estimation
MSE in the context of smoothing and Kalman filtering;
(ii) use these bounds to provide a near-optimal certificate for
greedy sensor selection in these applications; (iii) show that
the state estimation MSE is almost supermodular in many
cases of interest; and (iv) illustrate these results in numerical
examples.

Notation: Lowercase boldface letters represent vec-
tors (x), uppercase boldface letters are matrices (X), and
calligraphic letters denote sets (A). We write |A| for the
cardinality of A and let [p] = {1, . . . , p}. Set subscripts
are used to subset vectors, so that xA refers to the vector
obtained by keeping only the elements with indices in A. To
say X is a positive semi-definite (PSD) matrix we write X �
0, so that for X,Y ∈ Rn×n, X � Y ⇔ bTXb ≤ bTY b,
for all b ∈ Rn. Similarly, we write X � 0 when X is
positive definite. We use R+ to denote the set of non-negative
real numbers and Sn+ for the set of n× n PSD matrices.

II. PROBLEM FORMULATION

Consider a dynamical system with states xk ∈ Rn and ob-
servations yk ∈ Rp indexed by a discrete time index k. The
state evolution and observations follow the linear dynamics

xk+1 = Fxk + wk

yk = Hxk + vk
(1)

where F ∈ Rn×n is the state transition matrix and H ∈
Rp×n is the output matrix. The process noise wk and
measurement noise vk are zero-mean vector-valued Gaussian
random variables with covariances Rw = Ewkw

T
k =

diag
(
σ2
w,i

)
and Rv = Evkv

T
k = diag

(
σ2
v,i

)
for all k.

We assume {vi,vj ,wi,wj} are independent for all i 6= j.



The initial state x0 ∼ N (x̄0,Π0) is assumed be Gaussian
distributed with mean x̄0 and covariance Π0 � 0.

The goal of sensor selection problems is to choose a subset
of the outputs to be used for estimating the system states.
We would naturally like for this subset to be small and
lead to good estimation performance. Explicitly, we seek a
sensing set S with at most s outputs that minimizes the MSE
incurred from estimating the states xk from the subset of
outputs (yk)S . In particular, we are interested in studying
two estimation scenarios:

(PI) smoothing, where we minimize the MSE incurred
from estimating all states up to time ` based on
past observations. Formally, we seek the state es-
timates x̃k = E [xk | {(yj)S}j≤`] for k ≤ ` by
solving

minimize
S⊆[p]

JPI(S)

subject to |S| ≤ s
(PI)

where

JPI(S) = min
{x̃k}k≤`

∑̀
k=0

E
[
‖xk − x̃k‖22 | {(yj)S}j≤`

]
.

(2)
(PII) filtering, where we minimize the MSE of estimating

the current state using past observations, i.e., we
seek x̂k = E [xk | {(yj)S}j≤k]. For generality, we
can pose this problem for a m-steps window starting
at k = ` as

minimize
S⊆[p]

m−1∑
k=0

θk JPII,`+k(S)

subject to |S| ≤ s
(PII)

where θi ≥ 0 and

JPII,k(S) = min
x̂k

E
[
‖xk − x̂k‖22 | {(yj)S}j≤k

]
.

(3)
Note that as opposed to PI, the state at each time k is
only estimated based on observations that occurred
up to time k.

It is worth noting that the sensing set S in PI is selected
a priori, i.e., before the dynamical system operation. This is
of interest, for instance, if sensors are to be installed on the
selected outputs and then left to monitor the system. On the
other hand, PII can be used both for a priori and dynamic
sensor selection, where a fusion center chooses a limited
subset of distributed sensors to activate during each time
window. Moreover, it can accommodate different problems
depending on the choice of m and θk. For instance, PII
becomes a myopic sensor selection problem when m =
1 [25]. For arbitrary m, PII can optimize the final estimation
MSE (for θk = 0 for all k < m− 1 and θm−1 = 1), the m-
steps average MSE (for θk = 1 for all k), or some weighted
average of the error (e.g., θk = ρm−1−k, ρ < 1).

Note that PI and PII are in fact joint optimization problems
since their cost functions are themselves written as minimiza-
tions. However, it is possible to find closed-form expressions

for (2) and (3), i.e., expressions for the estimation error given
a fixed sensing set S. In the next section, we derive these
expressions before proceeding with the study of the sensor
selection problems PI and PII.

A. Sensor selection for state estimation

We start by finding a closed-form expression for the
MSE in (2). To do so, we cast smoothing as a stochastic
estimation problem using lifting. Indeed, proceeding
as in [26], note from (1) that estimating {xk}k≤` is
equivalent to estimating {x0,wk}k≤`−1. Therefore,
defining the stacked vectors ȳ` = [ (y0)TS · · · (y`)

T
S ]T ,

z̄` = [ xT0 wT
0 · · · wT

`−1 ]T , and v̄` =
[ (vT0 )S · · · (vT` )S ]T , it is straightforward that [30]

ȳ` = O`(S)z̄` + v̄`, (4)

with O`(S) = [I ⊗ (SH)]Φ`, where S is the |S| × n
selection matrix obtained by keeping only rows from the
identity matrix that have indices in S, ⊗ denotes the Kro-
necker product, and

Φk =


I
F I
...

...
. . .

F k F k−1 · · · I

 .

Then, the following proposition holds:
Proposition 1: The value of the minimum in (2) is

JPI(S) = Tr
{[

C−1 + Z(S)
]−1}

, (5)

where Z(A) =
∑
i∈A σ

−2
v,i Φ

T
`

(
I ⊗ hih

T
i

)
Φ` and hTi is

the i-th row of H .
Proof: See appendix.

For the filtering problem PII, we note from (3) that the
state estimate only depends on past observations. Therefore,
we are interested in recursively updating this estimate for
each new observation using a Kalman filter. Here, a previous
state estimate x̂k−1 with error covariance matrix Pk−1 =
E(xk−1− x̂k−1)(xk−1− x̂k−1)T is updated based on a new
measurement (yk)S using

x̂k = F x̂k−1 + Kk [(yk)S − SHFx̂k−1] , (6)

where Kk = Pk|k−1H
TSTR−1e,k is the Kalman gain,

Re,k = S(HPk|k−1H
T +Rv)S

T is the innovation covari-
ance matrix, and Pk|k−1 = FPk−1F

T +Rw is the a priori
error covariance matrix. Recall that S is the selection matrix
of the set S. The error covariance of the estimate in (6) is
given by

Pk(S) =
[
P−1k|k−1 + HTST

(
SRvS

T
)−1

SH
]−1

, (7)

with P0|−1 = Π0 � 0 [30]. The estimation MSE is the
trace of the estimation error covariance matrix (7), so that
the solution of (3) can be written as

JPII(S, k) = Tr

(P−1k|k−1 +
∑
i∈S

σ−2v,i hih
T
i

)−1 , (8)



where again hTi is the i-th row of H and we used the fact
that, since Rv is diagonal,

(
SRvS

T
)−1

= SR−1v ST .
Using the closed-form expressions in (5) and (8), PI

and PII become cardinality constrained set function optimiza-
tion problems which are NP-hard in general [10], [13]–[16],
[31]. Their solutions can therefore only be approximated in
practice, which is typically done using either a (possibly
sparsity-promoting) convex relaxation [16], [18]–[21], [23]
or greedy algorithms [16]. Nevertheless, neither approach
comes with performance guarantees. Indeed, though greedy
search is near-optimal for the minimization of monotoni-
cally decreasing supermodular set functions [32], neither (5)
nor (8) are supermodular in general [13]–[16], [31]. To
recover suboptimality certificates, surrogate supermodular
figures of merit are typically used instead of the MSE in PI
and PII by for instance replacing the trace in (5) and (8) by
the log det [20], [25]–[27]. Although this cost function is
related to the volume of the estimation error ellipsoid [19],
[26], it introduces distortions in solution due to the flatness
of the logarithm function.

To provide approximation certificates for the greedy min-
imization of the MSE in PI and PII, the following section
presents and develops the theory of approximately super-
modular functions, showing that members of this class can
be near-optimally minimized (Section III). Then, we study
a general class of set trace functions of which PI and PII
are part of and give explicit suboptimality bounds for their
greedy minimization (Section IV).

III. APPROXIMATE SUPERMODULARITY

Supermodularity (submodularity) encodes a “diminishing
returns” property of certain set functions that allows sub-
optimality bounds on their greedy minimization (maximiza-
tion) to be derived. Well-known representatives of this class
include the rank or log det of a sum of PSD matrices, the
Shannon entropy, and the mutual information [31], [33]. Still,
supermodularity is a stringent condition. In particular, it does
not hold for the cost functions in (5) and (8) [13]–[15], [31].

The purpose of approximate supermodularity (submodu-
larity) proposed in [29] is to allow certain levels of violations
of the original “diminishing returns” property. The rationale
is that if a function is “almost” supermodular, then it should
behave similar to a supermodular function. In what follows,
we formalize and quantify these statements.

Say a set function f : 2V → R is α-supermodular, for
some α ∈ R+, if α is the largest number for which it holds
that

f (A)− f (A ∪ {u}) ≥ α [f (B)− f (B ∪ {u})] (9)

for all sets A ⊆ B ⊆ V and all u ∈ V \ B. Explicitly,

α = min
A⊆B⊆V
u∈V\B

f(A)− f(A ∪ {u})
f(B)− f(B ∪ {u})

. (10)

We say f is α-submodular if −f is α-supermodular. Notice
that for α ≥ 1, (9) is equivalent to the traditional definition
of supermodularity, in which case we refer to the function

simply as supermodular [31], [33]. For α ∈ (0, 1), however,
we say f is approximately supermodular. Notice that (9)
always holds for α = 0 if f is monotone decreasing. Indeed,
a set function f is monotone decreasing if for all A ⊆ B ⊆ V
it holds that f(A) ≥ f(B).

Note that α in (10) is related to the submodularity ratio
defined in [11]. It is, however, more amenable to give
explicit (P-computable) bounds on its value because it is
a ratio of rank one updates (see Section IV). In fact, the
submodularity ratio bounds derived in [11] depend on the
minimum sparse eigenvalue of a matrix, which is NP-hard
to evaluate.

Before proceeding, we derive the following property of
α-supermodular functions that will come in handy when
studying JPII:

Proposition 2: Let fi : 2V → R be αi-supermodular func-
tions. Then, g =

∑
i θifi, θi ≥ 0, is min(αi)-supermodular.

Proof: From the definition of α-supermodularity in (9),
for A ⊆ B ⊆ V and u /∈ B it holds that

g (A)− g (A ∪ {u}) =
∑
i

θi [fi (A)− fi (A ∪ {u})]

≥
∑
i

αiθi [fi (B)− fi (B ∪ {u})] .

Using the fact that αi ≥ min(αi) we then have

g (A)− g (A ∪ {u}) ≥

min(αi)
∑
i

θi [fi (B)− fi (B ∪ {u})] ≥

min(αi) [g (B)− g (B ∪ {u})] .

Following a similar argument as in [32], we can now
show that α-supermodular functions can be near-optimally
minimized using greedy search:

Theorem 1: Let f? = f(S?) be the optimal value of the
problem

minimize
S⊆V

f (S)

subject to |S| ≤ s
(PIII)

and Gq be the q-th iteration of its greedy solution, obtained
by taking G0 = ∅ and repeating for j = 1, . . . , q

u = argminv∈V f (Gj−1 ∪ {v}) (11a)
Gj = Gj−1 ∪ {u} and V = V \ {u} (11b)

If f is (i) monotone decreasing and (ii) α-supermodular, then

f(G`)− f?

f(∅)− f?
≤
(

1− α

s

)q
≤ e−αq/s. (12)

Proof: Since f is monotone decreasing, it holds for
every set Gj that

f(S?) ≥ f(S? ∪ Gj)

= f(Gj)−
s∑
i=1

f(Ti−1)− f(Ti−1 ∪ u?i ), (13)



where T0 = Gj , Ti = Gj ∪ {u?1, . . . , u?i }, and u?i is the i-
th element of S?. Notice that (13) holds regardless of the
order in which the u?i are taken. Using the fact that f is α-
supermodular and Gj ⊆ Ti for all i, the incremental gains
in (13) can be bounded using (9) to get

f(S?) ≥ f(Gj)− α−1
s∑
i=1

f(Gj)− f(Gj ∪ u?i ). (14)

Finally, given that Gj+1 is chosen as to maximize the gain
in (14) [see (11)],

f(S?) ≥ f(Gj)− α−1s [f(Gj)− f(Gj+1)] . (15)

To obtain the expression in (12), suffices to solve the
recursion in (15). To do so, let δj = f(Gj) − f(S?) so
that (15) becomes

δj ≤ α−1k [δj − δj+1]⇒ δj+1 ≤
(

1− 1

α−1s

)
δj .

Noting that δ0 = f(∅) − f(S?), we can find a direct
expression for this recursion:

f(G`)− f(S?)
f(∅)− f(S?)

≤
(

1− α

s

)q
.

Using the fact that 1− x ≤ e−x yields (12).
Theorem 1 bounds the relative suboptimality of the greedy

solution of PIII when f is decreasing and α-supermodular.
Under these conditions, it ensures a minimum improvement
over the empty set. More importantly, (12) quantifies the
effect of violating supermodularity in (9). Indeed, when
α = 1 (i.e., when f is supermodular) and the greedy
search in (11) is repeated s times (q = s), we get the
classical e−1 ≈ 0.37 guarantee from [32]. On the other hand,
if f is approximately supermodular (α < 1), (12) shows that
the same 37% guarantee is recovered if we greedily select a
set of size s/α. Hence, α not only measures how much f
violates supermodularity, but also gives a factor by which a
greedy solution set must grow to maintain supermodular-like
near-optimality. It is worth noting that, as with the original
bound in [32], (12) is not tight and that better results are
typically obtained in practice (see Section V).

Although Theorem 1 characterizes the loss in suboptimal-
ity incurred from violating supermodularity, its performance
certificate depends on the value of α. Unfortunately, (10)
reveals that finding α for a general function is a combinato-
rial problem. To give actual near-optimal guarantees for the
greedy solution of PI and PII, the next section provides a
bound on α for a class of set trace functions of which the
cost functions (5) and (8) are particular cases. We then derive
specific results on the α-supermodularity of these functions.

IV. AN α-SUPERMODULAR TRACE FUNCTION

Let h : S+ → R be a trace function if it is of the
form h(M) = Tr [g (M)] for some function g. Examples
of trace functions include the log det and the Von-Neumann
entropy [34]. Here, we are interested in a specific family of

trace functions defined on sets. Formally, we study set trace
functions h : 2V → R of the general form

h(A) = Tr

(M∅ +
∑
i∈A

Mi

)−1 , (16)

where A ⊆ V , M∅ � 0, and Mi � 0 for all i ∈ V .
Note that the cost functions of PI and PII are both of
the form (16). Indeed, (5) takes M∅ = C−1 and Mi =
σ−2v,i Φ

T
`

(
I ⊗ hih

T
i

)
Φ`, whereas (8) for m = 1 takes M∅ =

P−1m|m−1 and Mi = σ−2v,i hih
T
i . We use Proposition 2 to

study the m > 1 case in Section IV-B.
Functions as in (16) display neither submodular nor su-

permodular behavior in general. Indeed, counter-examples
can be found in [12], [14], [15]. We can, however, show that
they are monotonically decreasing and give a closed-form (P-
computable) bound on their α-supermodularity.

Theorem 2: The set trace function h in (16) is (i) mono-
tone decreasing and (ii) α-supermodular with

α ≥ µmin

µmax
> 0, (17)

where

0 < µmin ≤ λmin [M∅] ≤ λmax

[
M∅ +

∑
i∈V

Mi

]
≤ µmax

and λmax(M) and λmin(M) denote the maximum and min-
imum eigenvalues of M , respectively.

Remark 1: Although there exist examples in which the set
trace function (16) is not supermodular, the general statement
of Theorem 2 does not allow us to claim that α < 1. A
simple counter-example involves the case in which M∅ =
µ0I and Mi = µiI , µ0, µi ≥ 0, so that (16) is effectively
a scalar function of µ0, µi. Since scalar convex functions of
positive modular functions are supermodular [35], α ≥ 1 in
this case.

Proof: The monotone decreasing nature of h [(i)] is
a direct consequence of the fact that matrix inversion is an
operator antitone function, i.e., that for X,Y � 0, it holds
that X � Y ⇔ X−1 � Y −1 [36]. Indeed, let Y (X ) =
M∅ +

∑
i∈XMi. Then, M∅,Mi � 0 implies that

A ⊆ B ⇔ Y (A) � Y (B)⇔ Y (A)−1 � Y (B)−1. (18)

From the monotonicity of the trace [34] we have

A ⊆ B ⇔ h(A) ≥ h(B).

To lower bound α [(ii)], we need to bound the gain
incurred by adding element i /∈ A to set A, i.e., ∆i(A) =
h (A ∪ {i})−h (A). Indeed, from the definition of α in (10)
we can write

α = min
A⊆B⊆V
i∈V\B

∆i(A)

∆i(B)
. (19)

To do so, note that Y (A) is an additive (modular) function
of A, so it holds that h (A ∪ {i}) = Tr

[
(Y (A) + Mi)

−1
]
.

Since Y (A) � 0 because M∅ � 0 but Mi need not be



invertible, we use an alternative formulation of the matrix
inversion lemma [37] to obtain

h (A ∪ {i}) = Tr
[
Y (A)−1 − Y (A)−1Mi [Y (A) + Mi]

−1
]

.

From the linearity of the trace [38], the gain can be written
as

∆i(A) = Tr
[
Y (A)−1Mi [Y (A) + Mi]

−1
]

. (20)

The goal is now to explicitly lower bound (20) by exploit-
ing spectral bounds. In particular, we will use the following
lemma whose proof is sketched in the appendices:

Lemma 1: For all A ⊆ V and i ∈ V \ A, it holds that

λmin
[
Y (A)−1

]
Tr
[
Mi [Y (A) + Mi]

−1
]
≤ ∆i(A)

≤ λmax
[
Y (A)−1

]
Tr
[
Mi [Y (A) + Mi]

−1
]

. (21)

Applying Lemma 1 to (25) yields

α ≥
λmin

[
Y (A)−1

]
λmax [Y (B)−1]

×
Tr
[
Mi [Y (A) + Mi]

−1
]

Tr
[
Mi [Y (B) + Mi]

−1
] . (22)

Note now that A ⊆ B implies that [Y (A) + Mi]
−1 �

[Y (B) + Mi]
−1, since Y −1 is a decreasing set function

per (18). From the ordering of the PSD cone, the second term
in (22) is therefore lower bounded by one. Since Y � 0, it
holds that σi(Y ) = λi(Y ) and we get

α ≥ λmin [Y (B)]

λmax [Y (A)]
.

Finally, the lower bound in (17) is obtained by observing
that, since Y is increasing, the following inequalities hold
for any set X ⊆ V:

λmin (M∅) ≤ λmin [Y (X )] ≤ λmax [Y (X )] ≤ λmax [Y (V)] .

Theorem 2 gives a deceptively simple bound on the α-
supermodularity of set trace function (16) as a function of
the spectrum of the M∅,Mi. Still, it is tighter than the one
provided in [29].

Note that bound (17) is akin to the inverse of the condition
number of the matrix-valued set function underlying h.
Indeed, let h(X ) = Tr

[
Y (X )−1

]
with Y (X ) = M∅ +∑

i∈XMi. Then, since Y −1 is symmetric, its condition
number with respect to the spectral norm can be written
as κ[Y −1(X )] = λmax[Y (X )]/ λmin[Y (X )] for any X ⊆
V . However, a more interesting geometrical interpretation
of (17) can be given in terms of the “range” of Y −1. To see
this, let the numerical range of Y −1 be

WV(Y −1) = W

⊕
X⊆V

Y (X )−1

 , (23)

where A ⊕ B = blkdiag(A,B) is the direct sum of A
and B and W (M) = {xTMx | ‖x‖2 = 1} is the classical

numerical range. Since the numerical range is a convex
set [38], define its relative diameter as

∆ = max
µ,η∈WV(Y −1)

∣∣∣∣µ− ηµ
∣∣∣∣. (24)

Then, the following holds:
Proposition 3: The set trace functions h in (16) is α-

supermodular with

α ≥
λmin

[
Y (V)−1

]
λmax [Y (∅)−1]

= 1−∆, (25)

where ∆ is the relative diameter of the numerical range of
the underlying matrix-valued set function of h in (23).

Proof: Since Y � 0, the numerical range in (23) is
the bounded convex hull of the eigenvalues of Y (X )−1 for
all X ⊆ V [38]. We can therefore simplify (24) using the
fact that it is monotonically increasing in µ and decreasing
in η. Explicitly,

∆ = max
X ,Y⊆V

∣∣∣∣∣λmax
[
Y (Y)−1

]
− λmin

[
Y (X )−1

]
λmax [Y (Y)−1]

∣∣∣∣∣.
From the antitonicity of matrix inversion [36], this maximum
is achieved for

∆ =
λmax

[
Y (∅)−1

]
− λmin

[
Y (V)−1

]
λmax [Y (∅)−1]

,

which together with Theorem 2 yields

α ≥
λmin

[
Y (V)−1

]
λmax [Y (∅)−1]

= 1−∆.

Therefore, (17) bounds how much h deviates from super-
modularity (as quantified by α) in terms of the numerical
range of its underlying function Y −1. The shorter the range
of Y −1, the more supermodular-like (16) will be. As we
show in the sequel, this is closely related in our applications
to some measure of signal-to-noise ratio (SNR).

A. α-supermodular results for smoothing

From Theorem 2, we can bound the α-supermodularity of
the cost function of PI as

α ≥ λmin(C−1)

λmax
[
C−1 + ΦT

`

[
I ⊗HTR−1v H

]
Φ`

] . (26)

Although (26) depends only on the model description (1),
it does not provide insight as to when α will be close to
one. It is therefore worth studying the special case of Π0 =
Rw = σ2

wI , Rv = σ2
vI , and H = I , for which (26) can be

simplified.
Indeed, recall that C is block diagonal and there-

fore λmin
(
C−1

)
= min[λmax(Π0)−1, λmax(Rw)−1] = σ−2w .

Also, from the spectral properties of the Kronecker product,
it holds that λmax(I ⊗HTR−1v H) = λmax(R−1v ) = σ−2v .
Weyl’s inequalities [38] and the spectral bounds on the
product of PSD matrices from [39] therefore allow us to
write

α ≥ 1

1 + σ−2v σ2
w λmax

(
ΦT
` Φ`

) .



To obtain a bound as an explicit function of F , note
that λmax

(
ΦT
` Φ`

)
= ‖Φ`‖22, where ‖M‖2 denotes the

spectral norm of M . The norm of Φk can be bounded
in terms of the norm of its blocks using the inequalities
from [40]. Explicitly,

α ≥ 1

1 + σ−2v σ2
w

∑`
k=0(`+ 1− k) ‖F k‖22

. (27)

As we alluded to earlier, the ratio in the denominator
of (27) plays the role of an SNR relating the state signal
power (in terms of σ2

w and ‖F ‖2) and the measurement noise
power (σ2

v). When this SNR is high, i.e., the measurement
noise level is small compared to the driving noise, the bound
on α decreases weakening the guarantees from Theorem 1.
This case is however of less practical value. Indeed, if the
process noise dominates the estimation error, the system
trajectory is mostly random and the choice of sensing subset
has little impact on the estimation performance. In the
limit, the best estimate of the system states is given by the
instantaneous measurements [30], [41]. A similar argument
holds for when the system is close to instability, i.e., the
norm of F is close to one.

On the other hand, for low SNRs, the denominator of (27)
decreases and Theorem 2 guarantees that the estimation MSE
displays supermodular-like behavior. This occurs when the
measurement noise is large compared to the process noise
and the system has fast decaying modes (‖F ‖2 � 1).

B. α-supermodular results for Kalman filtering

Using (6)–(8), the bound in (17) reads

αk ≥
λmin(P−1k|k−1)

λmax

(
P−1k|k−1 + HTR−1v H

) ,

for k ≥ 0. From the Riccati equation (7), this simplifies to

αk ≥
λmin(P−1k|k−1)

λmax [Pk([p])−1]
=

λmin [Pk([p])]

λmax
(
Pk|k−1

) , (28)

which is the ratio between the a posteriori error using all
sensors and the a priori error. Using Proposition 2, the cost
function in (8) is therefore α-supermodular with

α ≥ min
`≤k≤`+m−1

α`. (29)

The bound (28) is large when the a priori and a posteri-
ori error covariance matrices are similar. To get additional
insight into when this occurs, we proceed as in Section IV-
A and study the particular case in which Rw = σ2

wI
and Rv = σ2

vI . Then, from (6) and (7), the matrices of
interest take the form

Pk|k−1 = FPk−1F
T + σ2

wI (30a)

Pk([p]) =
(
P−1k|k−1 + σ−2v HTH

)−1
(30b)

Note from (30a) that Pk|k−1 depends directly on σ2
w.

Thus, from (30b), Pk([p]) ≈ Pk|k−1 when σ2
v � σ2

w. It
is important to highlight that this is the scenario in which
Kalman filters are most useful. Indeed, as in the smoothing
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Fig. 1. α-supermodularity bound (26) for different process noise variances.

case from Section IV-A, the filter tracking capability and
stability are hindered if the driving noise power is much
larger than the measurement noise power [41].

Additionally, the bound (28) will approach one only
if Pk|k−1 is well-conditioned. When σ2

w is large, this stems
directly from (30a). On the other hand, if σ2

w � 1, Pk|k−1 ≈
FPk−1F

T and its condition number depends directly on
that of F , since κ(Pk|k−1) ≤ κ(Pk−1)κ(F )2, where κ is
the condition number with respect to the spectral norm [38].
Thus, as in the batch case, the guarantees from Theorem 1
will be stronger when σ2

v � σ2
w and when the system

has fast decaying modes with similar rates (‖F ‖2 � 1
and κ(F ) ≈ 1).

V. SIMULATIONS

We start by evaluating the bounds derived in Section IV
for different noise and system decay rates. Our goal is to
illustrate the situations in which they are close to one, i.e.,
in which we can guarantee that the state estimation MSE
is close supermodular. In Fig. 1 we show results for the
smoothing problem, where n = 100, k = 15, H = I , Π0 =
10−2I , Rv = I , and Rw = σ2

wI with σ2
w ∈ [0.01, 100].

The elements of F were drawn randomly from a standard
Gaussian distribution and the matrix was normalized so that
the magnitude of its largest eigenvalue is 0.3. We plot 20
system realizations. As noted in Section IV-A, the bound
on α improves as σ2

w/σ
2
v decreases.

Similar results for the filtering problem are shown Fig. 2a,
which considers the myopic problem by taking m = 1
and ` = 5 in PII. All other parameters are as described
above. In this setting, we also investigate the effect of the
spectrum of the state transition matrix on bound (29). To
do so, we fix σ2

w = 10−2 and vary ‖F ‖2. The results are
displayed in Fig. 2b and corroborate our observations that
the presence of slowly decaying modes (‖F ‖2 ≈ 1) worsens
the guarantees obtained from Theorem 2.

Although the α-supermodularity bound of Theorem 2
provides good guarantees for a reasonable range of parame-
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Fig. 3. Relative suboptimality of greedy sensor selection for 1000 system
realizations: (a) smoothing and (b) filtering.

ters (see Fig. 1-2), we illustrate that greedy search typically
gives better results than those predicted by Theorem 2. We
do so by evaluating the relative suboptimality (12) of greedy
sensing sets for both smoothing and filtering over 1000
system realizations. Explicitly, if G is the greedy solution
and S? is the optimal solution of PI/PII, we evaluate

ν?(G) =
f(G)− f(S?)
f(∅)− f(S?)

.

Since ν? depends on the optimal sensing set, we restrict
ourselves to small dynamical systems (n = 10 states, p =
10 outputs, and s = 4). This time, both F and H are random
Gaussian matrices and F is normalized so that its norm
is 0.9. Also, we draw the measurement noise variance at
each output uniformly at random in [10−2, 1].

Results for PI are shown in Fig. 3a with k = 15. Note
that greedy sensor selection finds the optimal sensing set
in 99% of the realizations. Moreover, although the bound
in (26) gives α ≥ 0.21 which only guarantees ν? ≤ 0.81,
the relative suboptimality is never more than 0.02 in these
simulations. The experiment is repeated for PII in Fig. 3b,
except using ` = 0, m = 10, and θi = 1. In other words, we
minimize the 10-steps average MSE. Here, (29) gives α ≥
0.24 so that Theorem 1 guarantees ν? ≤ 0.79. The measured
relative suboptimality is nevertheless considerably smaller.

VI. CONCLUSION

This work studied the Kalman filtering sensor selection
problem and provided near-optimal guarantees to its greedy

solution. To do so, it introduced and developed the concept of
approximate supermodularity, giving bounds on the greedy
minimization of this class of functions. This theory was then
used to derive performance bounds for the state estimation
MSE, which we showed approach the typical 1/e guarantee
in typical application scenarios. This approach addresses the
issue of giving near-optimal guarantees for sensor selection
problems without relying on surrogate supermodular cost
functions (e.g., the log det). We expect that the approximate
supermodularity can be applied to provide bounds for other
cost functions and used to solve cardinality constrained
minimization problems in different contexts.
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APPENDIX

PROOF OF PROPOSITION 1

Proof: Since O` and statistics of the signals are
known, estimating z̄ from the linear model (4) is a stochastic
estimation problem. Thus, the minimum MSE incurred from

estimating z̄ from ȳ is given by the trace of [30]

K(S) =
[
C−1 + O`(S)T

[
I ⊗ (SRvS

T )
]−1

= O`(S)
]−1

,
(31)

where C = blkdiag(Π0, I⊗Rw) and blkdiag(X,Y ) is the
block diagonal matrix whose diagonal blocks are X and Y .

To obtain the form in (5), notice from (31) that K depends
on S only through O`(S)T

[
I ⊗ (SRvS

T )
]−1

O`(S). Us-
ing the fact that blkdiag(Ai)

−1 = blkdiag(A−1i ) and the
definition of O`(S) in (4) we obtain

O`(S)T
[
I ⊗ (SRvS

T )
]−1

O`(S) =

ΦT
` [I ⊗ (SH)]

T [
I ⊗ (SRvS

T )−1
]

[I ⊗ (SH)]Φ`.

From the mixed product property of the Kronecker prod-
uct [38] we then get

O`(S)T
[
I ⊗ (SRvS

T )
]−1

O`(S) =

ΦT
`

(
I ⊗HTSTSR−1v STSH

)
Φ`, (32)

where we also used the fact that (SRvS
T )−1 = SR−1v ST

since Rv is a diagonal matrix. Letting hTi to be the i-th row
of H in (32) and using the linearity of matrix products we
obtain [38]

O`(S)T
[
I ⊗ (SRvS

T )
]−1

O`(S) =∑
i∈S

ΦT
`

(
I ⊗ σ−2v,ihih

T
i

)
Φ`. (33)

Substituting (33) in (31) and taking its trace yields (5).

PROOF SKETCH OF LEMMA 1

Proof: Start by defining the perturbed gain as ∆ε =

Tr
[
Y (A)−1M̄i

[
Y (A) + M̄i

]−1]
, for ε > 0, where M̄i =

Mi+ εI � 0. We omit the dependence on i for clarity. Note
that, ∆ε → ∆ as ε → 0. Using the invertibility of M̄i, we
obtain

∆ε(A) = Tr
[
Y (A)−1

[
Y (A)−1 + M̄−1

i

]−1
Y (A)−1

]
.

Since Y (A)−1 � 0, its square-root Y (A)−1/2 is well-
defined and unique [38]. We can therefore use the circular
commutation property of the trace to get

∆ε(A) = Tr
[
Y (A)−1Z

]
, (34)

with Z = Y (A)−1/2
[
Y (A)−1 + M̄−1

i

]−1
Y (A)−1/2.

Since both matrices in (34) are positive definite, we can use
the bound from [39] to obtain

λmin
[
Y (A)−1

]
Tr [Z] ≤ ∆ε(A) ≤ λmax

[
Y (A)−1

]
Tr [Z] .

Reversing the manipulations used to get to (34) finally yields

λmin
[
Y (A)−1

]
Tr
[
M̄i

[
Y (A) + M̄i

]−1] ≤ ∆ε(A)

≤ λmax
[
Y (A)−1

]
Tr
[
M̄i

[
Y (A) + M̄i

]−1]
.

The result in (21) is obtained by continuity as ε→ 0.


