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ABSTRACT

Gaussian processes (GPs) are often used as prior distributions
in non-parametric Bayesian methods due to their numerical and
analytical tractability. GP priors are specified by choosing a co-
variance function (along with its hyperparameters), a choice that
is not only challenging in practice, but also has a profound im-
pact on performance. This issue is typically overcome using hi-
erarchical models, i.e., by learning a distribution over covariance
functions/hyperparameters that defines a mixture of GPs. Yet, since
choosing priors for hyperparameters can be challenging, maximum
likelihood is often used instead to obtain point estimates. This ap-
proach, however, involves solving a non-convex optimization prob-
lem and is thus prone to overfitting. To address these issues, this work
proposes a hybrid Bayesian-optimization solution in which the hy-
perparameters posterior distribution is obtained not using Bayes rule,
but as the solution of a mathematical program. Explicitly, we obtain
the hyperparameter distribution that minimizes a risk measure in-
duced by the GP mixture. Previous knowledge, including properties
such as sparsity and maximum entropy, is incorporated through (pos-
sibly non-convex) penalties instead of a prior. We prove that despite
its infinite dimensionality and potential non-convexity, this problem
can be solved exactly using duality and stochastic optimization.

1. INTRODUCTION

In practice, we are commonly faced with the challenge of extracting
information from data and signals whose complexity is beyond that
supported by existing parametric models. Simultaneously, it is often
critical to determine the uncertainty associated with this information,
especially when it is to be used as the basis for decision-making.
Nonparametric Bayesian methods are particularly well-suited for
these applications, since they provide distributions over function
spaces conditioned on the observations. They can therefore be used
to produce not only point estimates, such as those obtained from
reproducing kernel Hilbert spaces (RKHSs) or splines models, but
also uncertainty measures for those estimates. These techniques
have been used to tackle problems from statistics, machine learning,
control, and signal processing [1-5].

As in all of Bayesian inference, this distribution over functions—
known as a posterior—is obtained by using Bayes’ rule to combine
a likelihood, arising from the measurement model, and a prior, for
which Gaussian processes (GPs) have become a standard choice [2—
4]. The success of GPs stems from their simplicity and flexibility.
Indeed, though they are fully specified by the choice of a covariance
function (along with its hyperparameters), there exists a large variety
of admissible functions able to express smoothness, periodicity, and
other structural properties. What is more, these functions can be com-
bined to induce more complex properties on the solution [6]. Despite
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this flexibility, GPs remain numerically and analytically tractable, as
their posterior can often be computed in closed-form [2].

The price for this flexibility is an additional burden to produce
covariance functions appropriate for the task at hand. Indeed, this
choice has a considerable effect on inference, making GP-based mod-
els susceptible to misspecification. In fact, even when observations
abound, it can be hard for the evidence to overcome a misspecified
GP prior in complex models [7-9]. This issue is aggravated by the
limited prior knowledge available in many practical scenarios and by
the difficulty in interpreting hyperparameters, especially when differ-
ent covariance functions are combined.

In practice, the issue of selecting a covariance function is reduced
to that of tuning a set of hyperparameters, either because the covari-
ance structure is known or because one of the hyperparameters is
used to select among families of covariance functions [2—4]. Two
contrasting approaches are then used to learn these hyperparameters
from data. The first obtains a point estimate by maximizing the likeli-
hood of the observations with respect to the hyperparameters, a tech-
nique sometimes called type II maximum likelihood (ML) or ML-IL.
Though practical, the multimodal nature of the likelihood combined
with the use of point estimates makes this approach prone to overfit-
ting and unable to quantify the uncertainty associated with the hyper-
parameters [1,2]. The second, more Bayesian approach is to place a
prior on the hyperparameters and obtain a posterior distribution using
traditional Monte Carlo Markov Chain (MCMC) methods. Though it
addresses many of the issues from ML-II, the challenge of choosing
priors for hyperparameters remains, either because their interpreta-
tion is not straightforward or because there is a lack of information
as to what reasonable values are [6]. What is more, “noninformative”
priors may have unexpected effects in hierarchical models, besides
their numerical issues (e.g., improper posteriors) [2,3, 10].

In this work, we propose a hybrid GP learning technique in-
spired by both Bayesian statistics and statistical optimization. As in
Bayesian inference, we seek a distribution over the hyperparameters
values instead of point estimates, reducing the risk of overfitting and
allowing uncertainty to be quantified. Inspired by statistical learn-
ing, however, this hyperparameter distribution is obtaining not using
Bayes’ rule, but by minimizing a risk measure over the data. Hence,
the posterior is obtained as the solution of an optimization problem
without ever explicitly specifying a prior. Prior knowledge is incor-
porated using penalties terms that allow complex properties such as
sparsity to be imposed. Though infinite dimensional and possibly
non-convex, this optimization problem can be solved exactly using
duality and stochastic optimization.

2. MODEL LEARNING FOR GPs

Let (@:,9:), ¢ = 1,...,m, be a set of independent observations
where ; € R? and y; is normally distributed according to



yi ~ N(fO(:),00), (1

for unknown function f° and variance o2. The goal of GP estima-
tion is to obtain a distribution over functions f conditioned on these
observations. To do so, its leverages Bayes’ rule to write

P(f [ {2, yi}iz1,n] < [[Plyi | 0 AIP[f [ @], ()

i=1

where the likelihood P [y; | «:, f] = N (yi | f(x:),c2) is obtained
from (1) and the prior P [f | ;] is a GP. For convenience, « can be
thought of as a feature vector or a system input, y as a label or a
measurement, and f as a classifier or estimator.

A GP is a stochastic process whose finite dimensional marginals
are multivariate Gaussians. Formally, let m : R? — R be a mean
function and k : RP? x R? — R positive-definite be a covariance
function. Then, GP(m, k) is a distribution over functions g such

that [g(x1) --- g(xn)]" ~ N(m,K) forall n € N with m =
[m(x1) --- m(x,)]” and
k(x1, 1) k(x1,xn)
K = . 3)
k(mn7m1) k(mnamn)
As is usual, we assume from now on that m = 0 and simply

write GP(k) [2]. The covariance function k often depends on hy-
perparameters that determine its properties, in which case we make
the dependence explicit by writing kg, where @ € T is a vector that
collects the hyperparameters and 7 C R? is a compact set of admis-
sible values. For instance, the commonly used squared exponential
or radial basis function is given by
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ko(x, ') = 0 exp |:—

where § denotes the Kronecker delta. Here, 8 = [02, K, of] T deter-
mines the output scale, the length-scale, and the noise level.

The tractability of GPs comes from the fact that for measure-
ments as in (1) and (f | {;}) ~ GP(k), the posterior in (2) has a
closed-form expression. Explicitly, for any point & € R",

(f@) [{zi,y:}) ~ N (1, ), )

. 7T 7-—1 _ T 17 .
with p = k" K "y and ¥ = k(&,Z) — k" K "k, where y is
a vector collecting the y; from (1), k = [k(&,@1) --- k(&, z,)]",

and K is as in (3). Notice that the Gram matrix K is fixed for a given
covariance function k. As a result, its factorization can be computed
a priori, reducing the cost of evaluating (5) to O(n?) [2,4].

Itis clear from (5) that the inference result heavily depends on the
choice of covariance function (and its hyperparameters). To sidestep
the challenges involved in hand-picking these settings, hierarchical
models are often used to include k, or more precisely its hyperpa-
rameters 6, in the inference procedure [2, 3, 10]. On the lower level,
the distribution in (2) is conditioned on the hyperparameters to get

Pl X,y, 0] <Ply| X, f,0]P[f | X,6]. (6a)

The posterior is then evaluated by marginalizing over 6 as in

P[f|X,y}:/TP[ﬂx,y,emmx,y}de. (6b)

Then, another level of inference is used to compute the hyperparam-
eters posterior P [0 | X, y] required to evaluate (6b). Explicitly,

PlO| Xyl Ply | X,0]P[6 | X] (7a)

P[ywx,e]z/ Ply | X, /(2),0]P[f(&) | X,6)di

RP

T gr—1
— ; exp (,yl{iey) (7b)
(27)" det(Ke) 2

Notice that (6)—(7) enables learning the hyperparameters from
the observations by leveraging the hyper-prior P[0 | X]. In other
words, the hierarchical model has transferred the issue of choosing
a prior from functions to hyperparameters. Still, we face similar in-
terpretation and indeterminacy challenges as we did when selecting
the covariance function of GPs [1,2]. What is more, the use of non-
informative priors can lead to numerical issues in hierarchical mod-
els [3] and given the underlying GP-based inference, we may again be
confronted with misspecification issues [7-9]. Obtaining a point es-
timate for @ to plug into (6a) by maximizing the likelihood in (7b) is
also not without issues, since the objective is often multimodal (non-
convex), making the result prone to overfitting [1,2].

In the sequel, we address these issues by taking advantage of the
Bayesian hierarchical model (6)—(7) without explicitly specifying the
hyperparameters prior in (7a). Inspired by statistical learning, we di-
rectly obtain the posterior P [0 | X, y], not by using Bayes’ rule, but
by minimizing an empirical risk over the distribution (6b). Desired
properties and prior knowledge are encoded in penalties included in
the in the objective. We then proceed to show that, despite its in-
finite dimensionality and possibly non-convex nature, the resulting
optimization problem can be solved exactly under mild conditions.

3. BAYESIAN POSTERIOR OPTIMIZATION

We develop our approach by first explicitly formulating GP model
learning as a statistical learning problem. Recall that in the latter,
seek the function ¢ : RY — R in a function space F that minimizes
the expected value of a risk measure £ : R> — R over an unknown
joint probability distribution D over data pairs (x, y). Explicitly,

¢ € argmin Eg y)~p [((¢(2), )] + R(9), (P1)
beF

where R is a penalty function used to describe prior knowledge or
impose structure on ¢* [11]. In contrast to (PI), model learning for
GPs seeks not a function, but a distribution over functions (namely,
a GP). Specifically, the function space F in (PI) is replaced by the
space of GPs GP as in

I'" € argmin B ), por [((f(2),9)] + R(T).  (py)
regp

Note that (PII) minimizes the expected value of ¢ not only over the
unknown data distribution D, but also over the GP I'.

To solve (PII), we must overcome three challenges of statistical,
representational, and algorithmic natures. The first (statistical) is that
we do not know D to evaluate the objective of (PII). This is a classical
problem in statistical learning that is overcome using data. To be sure,
we can use realizations (x;, y;) ~ D to approximate the expectation
by an empirical average as in

. 1 — .
™ in =S Epor [0(f(z:), yi D).
€ argmin n; ser [O(f (@), )] + B(D). (P



Statistical learning theory is often concerned with the conditions un-
der which T™* is close to T'* [11]. The second challenge (representa-
tional) comes from the difficulty in optimizing over GP. Indeed, the
space of GPs is isomorphic to the space of positive-definite functions
for which it is hard to obtain practical representations. Though ap-
proximations based on spectral representations have been proposed,
they can be hard to optimize over due to the resulting non-convex
mathematical programs [12,13]. We overcome this issue by leverag-
ing the marginal representation in (6b) to write

p* € argmin > /TEf~GH>(k9> [€(f (i), y:)] p(0)d6 + R(p),
i=1

peP N

(PIII)
where P is the space of probability densities. Note that the remaining
expected value in the objective of (PIII) is a Gaussian integral com-
pletely defined by kg. It can therefore be computed efficiently using
Gauss-Hermite quadrature or in the case of quadratic losses, even be
obtained in closed-form. The GP is then obtained by marginalizing
over 0 as in

I = /T P(f|X,y,6)p"(8)do. ®)

Observe from (8) that p* takes the place of the hyperparameter
posterior P (6 | X, y) from (6b). Since its optimization variable is in
fact a posterior distribution, we call (PIII) a Bayesian posterior opti-
mization problem. Note, however, that no prior distribution exists in
the context of (PIII): the posterior is obtained directly from data by
solving an empirical risk minimization problem. That is not to say
that prior knowledge cannot be incorporated through the penalty R.
Indeed, this regularization can be used to promote structural proper-
ties of the posterior as well incorporate a priori information on the
value of the hyperparameters. Examples involving entropy, sparsity,
and moments are presented in Section 5.

The integral in (8) also lends itself to a parametric, non-Bayesian
interpretation. Let ® = {P(-,0) € P(F) | 8 € T} be a dictionary
that contains a continuum of probability densities P over the space
of functions 7. We can then approximate Bayesian inference over F
by the optimal coding problem of finding the convex combination
of elements of ® that minimizes an empirical loss over the observa-
tions [14]. In a sense, ® is an infinite dimensional parametrization
of (a subset of) the space of distributions over F. In the case of (8),
© provides a parameterization of a subset of GP and (PIII) finds the
GP in the span of © that optimally fits the data {x;, y; }.

Though readily useful, (PIII) is an infinite dimensional optimiza-
tion problem that, depending on the choice of penalty R, could also
be non-convex. This brings us to the final challenge (algorithmic)
of obtaining a practical, efficient method to solve (PIII). In the next
section, we show that despite its appearance of intractability, (PIII)
can be solved exactly using duality under mild assumptions (most
notably, still allowing non-convex penalties R).

4. SOLVING BAYESIAN POSTERIOR
OPTIMIZATION PROBLEMS

To develop a simple and practical algorithm for solving (PIII), we
leverage recent results from duality theory to write a convex opti-
mization problem from which a solution of (PIII) can be recovered.
This single variable mathematical program is then solved using the
probabilistic bisection algorithm (PBA) [15, 16], though stochastic
gradient ascent methods can also be used. Before proceeding with
the derivations, we state the assumptions under which our algorithm
is guaranteed to solve (PIII):

Algorithm 1 Bayesian posterior optimization

For an upper (£§) and lower (£) bound on €%, a
numerical integration method I, and s such that
P [sign(I(p) — 1) = sign(f p(0)dO — 1)] > s, initial-
ize 70(€) = (€ — &) ! for € € [¢, €] and zero otherwise
fort=0,...,T—1 B

&t < median of ¢

if I(pe,) > 1 then

_ )20 =s)re(§), €< &
e = {an(s), £>¢&
else
_ ) 2sm(8), §< &
retll) = {2(1 — (). €26
end if
end

P*(8) = pe- (6) for ¢* = argmax, rr(¢)

A.1 The penalty function R is a separable functional, i.e., the penalty
is of the form

R:/rh[p(e),e} 9 )

A.2 The density p* and the functions h and ¢ are non-atomic.

A.3 The risk £ in (PIII) and the function A in (9) are normal integrands
and the objective of (PIII) is strongly convex.

Assumptions 1 and 2 are used to prove that (PIII) can be solved using
duality even if the penalty R is non-convex. Assumption 3 allows
us to overcome the challenge of infinite dimensionality by solving
optimizing p individually for each 8. Though the strong convexity
assumption is not necessary, it simplifies the derivations as the solu-
tion of (PIII) then becomes unique [17].

First, notice that, under Assumptions 1-3, (PIII) is equivalent to

p* = argmin
+
pEL1

% ; /TEf~GP<ke) [e(f (i), y:)] p(6)dO

C
+ZAT/ThT (p(0),6] d6

subject to / p(0)d0 =1,
T

(PIV)
where the optimization is now performed over Lf, the space of in-
tegrable, non-negative valued functions, and we allow C different
penalties weighted by A\, > Oforr = 1,...,C. Proceed by defining
the Lagrangian associated with (PIV) as

L. = 13 [ Ermor [0S @) )] p(0)d0

+iAr/Thr[p(9),9}d9+§Mrp(e)de—1],

its dual function as d(§) = min,_, + £(p,§), and its dual problem
1
as

(10)

maximize d(&).

i (DIV)

This dual problem is attractive for two reasons. First, it is a convex
optimization problem. This is in fact true of all dual problems since
the dual function is defined as a minimum of affine functions and
must therefore be concave [17]. In practice, this implies that if we



can evaluate d(&), we can solve (DIV). The second reason is laid
out in the following theorem that shows that the solutions of (PIV)
and (DIV) are intrinsically connected:

Theorem 1. Let £* be any solution of (DIV). Then, under Assump-
tions 2 and 3, it holds that

p* = argmin L(p, ") (11
peLf

As opposed to the first point, this result is not trivial. It stems from
the fact that £ is strongly convex (Assumption 3) and that (PIV) is
a particular case of a sparse functional program (SFP) [14]. Though
non-convex, SFPs have been shown to have no duality gap, thus al-
lowing them to be solved exactly using duality [14, Thm. 1]. Due
to space constraints, we defer the formal proof of this result to the
extended version of this work.

All that is left now is to compute the minimizer in (11). If this
minimization is tractable, then the objective of (DIV) and conse-
quently £* can be computed efficiently. As a result, Theorem 1 im-
plies that (PIII) itself can be solved efficiently. To solve the optimiza-
tion problem (11), note that the Lagrangian (10) can be written as

C
£ = [ | @0+ € 6)+ 3 Ao (0).61 | do—¢ 12)

with

wo)==>" / W v)N (3 | o So) di. (13)
i=1

where we used (5) to replace the posterior P [f(x;) | X, y, 0] by a
Gaussian distribution whose parameters are determined by the covari-
ance function ke. Since £ and h,. are normal integrands and L] is a
separable space, the minimum and the integral can exchanged [18,
Thm. 3A]. Hence, we can solve the minimization individually for
each 0 and obtain

c
p¢(6) = argmin (£(0) + &) p + > Ahe[p,6].  (14)
pz r=1
Even when the h, are non-convex, this scalar problem often has
a simple closed-form solution, as is the case for the negative en-
tropy, sparsity, and first-order moment penalties using in Section 5.
A step-by-step procedure to solve (PIII) is presented in Algorithm 1,
where £* is obtained using PBA [15, 16].

5. NUMERICAL EXAMPLE

To illustrate the use of Bayesian posterior optimization, we consider
a scalar regression problem. We draw n = 7 points from a zero-mean
GP with squared exponential covariance function as in (4) and hyper-
parameters 0> = 1, x = 1, and 62 = 0.1 (Figure 1a). We assume

that the output scale o2 is known and seek to learn the other two pa-

. T
rameters, i.e., @ = [k, o], over the ranges x € [0,6] and o7 €

[107*,1]. Figure 1b shows the likelihood of the observations with
respect to the remaining hyperparameters, i.e., P [y | X, K, o2 ] . No-
tice that it has two local maxima: one corresponds to a less smooth
and less noisy solution (blue mark and Figure 1c) and the other cor-
responds to a smoother and more noisy explanation of the data (red
mark and Figure 1d). The predictive curves are obtained using the
learned GPs to fit 200 equally spaced points Z in the range [0, 10].
Since these predictions are multivariate Gaussian distributions, we
use transparency to plot each of the 200 principal axes of their 95%

2.5 10°
* &3 10
. x . B0
= 0 5
= x * £ 10
* 4
95 102
0 25 5 75 10 0 .
x Lengthscale (k)
(a) (b)
2.5 2.5
E o E 0
S~ S
2.5 2.5
0 25 5 75 10 0 25 5 75 10
T x
(c) (d)

Fig. 1. Data description: (a) observations; (b) likelihood of observa-
tions with respect to the hyperparameters; (c) local maximum (non-
smooth, low noise); (d) local maximum (smooth, high noise).

confidence ellipsoid. Notably, these observations do not support re-
jecting either of these hypotheses, illustrating why ML-II (or any
other point estimate method) are susceptible to overfitting.

To proceed, we solve (PIII) for the classical squared loss £(z, 2) =

(z — 2')® with a negative entropy penalty hi(z) = zlog(z)
and Ay = 1. Notice from Figure 2a, that the resulting hyperpa-
rameter posterior suggests that, though the data do not support noise
levels above 0.1, they cannot distinguish between a wide range of
lengthscales . The result is that the mean of the learned GP displays
an intermediate smoothness between Figures 1c and 1d, but its confi-
dence intervals support different degrees of smoothness (Figure 2b).
In order to prune low probability regions of the hyperparameter
posterior, we may wish to trade-off entropy and sparsity by adding
a penalty of the form h2(z) = I(z # 0), where I(z # 0) = 1
if z # 0 and zero otherwise. Figure 3 shows the result of doing
so for A2 = 2. By enforcing sparsity on the posterior, it has now
become clear that not only would GPs with high noise not fit the
observations, but neither would GPs with very small lengthscales.
Despite the non-convexity of ho, Theorem 1 guarantees that Fig-
ure 3a is indeed p*. Finally, if prior knowledge about the problem
suggests that the underlying function is smooth, we can encode this
information in (PIII) by adding a penalty on the first-order moment
of , i.e., taking hs3 [p(0), 0] = xp(0). In Figure 4, we display the
hyperparameter posterior and predictive curve for A3 = 1. Though
the resulting p* concentrates around small lengthscales, there are still
GPs with a wide range of noise levels that would fit the data.

Rather than explicitly inducing GPs with small lengthscales, we
can replace the traditional squared loss by a cross-validated (CV) ver-
sion using leave-one-out. Namely, for each ¢, we can compute the pg
and 3 used to evaluate £ in (13) without (x;, y;). The empirical loss
then becomes the average prediction error of the GP on the dataset.
Reverting to A3 = 0 and choosing A1 = 5 and A2 = 3 yields Fig-
ure 5. Now, only smoother GPs fit the observations and the poste-
rior in Figure 5a displays an accumulation of mass around x = 0.3
and o2 = 1073, Still, the noise level remains uncertain due to the
small number of observations. Also note that the CV loss suggests
the data could also be predicted by degenerate GPs with small length-
scales and noise, i.e., by effectively deterministic, constant functions.
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Fig. 2. Bayesian posterior optimization with ¢ loss and negative
entropy penalty: (a) p* and (b) prediction
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Fig. 3. Bayesian posterior optimization with ¢ loss and negative
entropy and sparsity penalties: (a) p* and (b) prediction

6. CONCLUSION

We addressed the issue of learning a GP prior for nonparametric
Bayesian regression using a hybrid technique that, as in Bayesian
inference, seeks a distribution over the hyperparameters values, but
inspired by statistical learning, obtains this distribution not using
Bayes’ rule, but by minimizing a risk measure over the data. A
hyperparameter posterior is then obtained as the solution of an opti-
mization problem without ever explicitly specifying a prior. A priori
information can be incorporated using (possibly non-convex) penal-
ties terms such as entropy and sparsity. Though infinite dimensional
and possibly non-convex, we show that this optimization problem
can be solved exactly using duality and stochastic optimization. We
believe this technique may be used beyond GPs to address the issue
of learning priors and systematize Bayesian modeling procedures.
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