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Abstract—This work introduces a new data reuse algorithm
based on the incremental combination of LMS filters. It is able to
outperform the Affine Projection Algorithm (APA) in its standard
form, another well-known data reuse adaptive filter. First, the so
called true gradient data reuse LMS—sometimes referred to as
data reuse LMS—is shown to be a limiting case of the regularized
APA. Afterwards, an incremental counterpart of its recursion
is inspired by distributed optimization and adaptive networks
scenarios. Simulations in different scenarios show the efficiency
of the proposed data reuse algorithm, that is able to match and
even outperform the APA in the mean-square sense at lower
computational complexity.

I. INTRODUCTION

Since the early ages of adaptive filtering, many efforts
have been made to derive adaptive algorithms with faster
convergence than the classical LMS filter while retaining its
low complexity. Among the different solutions proposed, data
reuse (DR) has become a very successful technique to accel-
erate convergence, although at the cost of being inefficient
implementation-wise [1].

One of the most celebrated DR adaptive filters (AFs) is
the Affine Projection Algorithm (APA) [2]. Although other
DR algorithms have been proposed [3]–[6], they are rarely
compared to the APA due to its superior performance. For
instance, in the case of speech echo cancellation the APA
has almost the same performance as a Fast Recursive Least
Square (FRLS) filter with roughly 3 times less operations [7].

Another recently introduced technique to improve filtering
performance is the combination of AFs. This approach consists
of aggregating a pool of AFs through mixing parameters, adap-
tive or not, and attempting to achieve universality, i.e., making
the overall system at least as good—usually in the mean-
square sense—as the best filter in the set. Combinations with
different step sizes, orders, adaptive algorithms, topologies,
and supervising rules can be found in [8]–[14].

In this work, a solution merging combinations of AFs and
DR is devised by:

• Extending the concept of combination of AFs to accom-
modate for DR;
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• Showing that the APA is, under certain conditions, equiv-
alent to the true gradient DR LMS (TRUE-LMS) [3], [4];

• Devising an incremental counterpart of the TRUE-LMS;
• Showing through simulations that the proposed algorithm

can either match or outperform the regularized APA with
lower complexity [15], [16].

II. PROBLEM FORMULATION

In a system identification scenario, consider the measure-
ments d(i) = uiw

o + v(i), where wo is an M × 1 vector that
models the unknown system, ui is the 1×M regressor vector
that captures samples u(i) of an input signal with variance σ2

u,
and v(i) the realization of an i.i.d. process with variance σ2

v .
An AF can then be described as

wi = wi−1 + µp, (1)

in which wi is an estimate of wo at iteration i, µ is a step size,
and p = −B∇∗J(wi−1) is the update direction vector, with B
any positive definite matrix and J(wi−1) the underlying cost
function the filter attempts to minimize. The operator ∗ denotes
conjugate transposition [16].

Different choices of p lead to different adaptive algorithms,
such as

wi = wi−1 + µu∗i e(i) (LMS) (2)

wi = wi−1 + µ
u∗i

‖ui‖2 + ε
e(i) (NLMS), (3)

where 0 < ε� 1 is a regularization factor and e(i) = d(i)−
uiwi−1 is the output estimation error [16].

A. Data reuse

Data reuse consists either of using K > 1 times a single
data pair {ui, d(i)} or operating over a set of past data pairs
{Ui, di}, where Ui = [ uTi · · · uTi−K+1 ]T is a K ×M
regressors matrix and di = [ d(i) · · · d(i−K + 1) ]T is
a K×1 measurements vector. Such algorithms are particularly
appropriate in communication systems, where the rate of
signaling is constrained by bandwidth restrictions, or speech
applications, where data is inherently intermittent [1], [17].
Moreover, most of these AFs are able to trade off complexity
and performance by changing K, which is invaluable in many
scenarios [6].



Figure 1. Combination of AFs with DR (dashed lines imply information
exchange)

The first DR algorithm, the data reuse LMS (DR-LMS), was
introduced in [18] and operated K times over a same data pair.
Explicitly,

w0,i = wi−1

wk,i = wk−1,i + µu∗i [d(i)− uiwk−1,i]
wi = wK,i.

(4)

Another algorithm, also commonly referred to as DR-LMS,
extends the LMS filter for data sets of the type {Ui, di},
leading to

wi = wi−1 + µU∗i ei, (5)

where ei = di − Uiwi−1 [3]. In order to avoid confusion
with (4), this algorithm will be renamed true gradient data
reuse LMS (TRUE-LMS), in reference to true gradient dis-
tributed optimization techniques (see Section IV).

Last, the APA’s standard form, an acclaimed DR algorithm,
is given by [16]

wi = wi−1 + µU∗i (εI + UiU
∗
i )
−1 ei. (6)

B. Combination of AFs
In combinations, a pool of N AFs, called the components,

are aggregated so as to provide a better overall algorithm, in
a particular way, than any of the individual filters. So far in
the literature, all components operated over the same data pair
{ui, d(i)} [9]–[14], contrasting with the definitions introduced
hereafter, which allow for a more general use of the available
data (Fig. 1).

First, the components are identified by introducing an index
n = 1, . . . , N , as in wn,i, the n-th component coefficients2.
For the sake of simplicity, the following presentation will
be restricted to LMS component filters for a set of mixing
parameters {ηn(i)}, although it can be easily extended to
different AFs. Then, parallel and incremental combinations are
written as

Definition 1. Parallel combinations [9]–[11]

wn,i−1 = δ(i− rL)wi−1 + (1− δ(i− rL))wn,i−1
wn,i = wn,i−1 + µnu

∗
n,i[dn(i)− un,i wn,i−1]

wi =

N∑
n=1

ηn(i)wn,i

(7)

2

Note that in this work k indexes data, while n indexes component filters.
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Figure 2. Diagram of relations between DR algorithms

where δ(·) is Kronecker’s delta and r ∈ N.

Definition 2. Incremental combinations [12]

w0,i = wi−1

wn,i = wn−1,i + ηn(i)µnu
∗
n,i[dn(i)− un,i wn−1,i]

wi = wN,i

(8)

Note that for un,i = ui and dn(i) = d(i) the commonly
used combinations are recovered [9]–[12]. Moreover, as L→
+∞, the coefficients feedback [9] is bypassed, resulting in a
parallel-independent combination [10], [11].

An important consequence of this novel approach is that DR
algorithms are easily cast in this framework, bringing a new
interpretation for these AFs. For example, taking the parallel
combination (7) with N = K, L = 1, µn = µ, un,i = ui−n+1,
dn(i) = d(i − n + 1), and ηn(i) = 1/N leads to the TRUE-
LMS recursion in (5). Similarly, the incremental combination
from (8) with N = K, µn = µ, un,i = ui, dn(i) = d(i), and
ηn(i) = 1 is identical to the DR-LMS (4).

III. APA AND TRUE-LMS
Other relations involving DR algorithms, like the one

described in the previous section, have already been
found (Fig. 2). In [17], the NLMS was proved to be a limiting
case (K →∞) of the DR-LMS. A straightforward association
also exists between the APA and the NLMS: both algorithms
are equivalent for K = 1 [16].

In the sequel, a new relation is derived showing that,
when over-regularized and/or under vanishing inputs, the APA
recursion converges to that of the TRUE-LMS in (5). In the
APA update from (6), writing the step size as µ = µ′ε, µ′ > 0,
in the limiting condition σ2

u/ε→ 0 one has

lim
σ2
u/ε→0

(µ′ε)U∗i (εI + UiU
∗
i )
−1ei =

µ′ U∗i

[
lim

σ2
u/ε→0

ε(εI + UiU
∗
i )
−1
]
ei =

µ′ U∗i

[
I + lim

σ2
u/ε→0

ε−1UiU
∗
i

]−1
ei. (9)

The following theorem establishes the conditions under which
the limit in (9) is null and the TRUE-LMS update is recovered.

Definition 3. f(x) is said to be superlinear if

lim
x→0±

f(x)

|x|
= 0.



Theorem 1. Let the {u(i)} collected into the vector ui be
realizations of a zero-mean complex wide-sense stationary
random variable (RV) u with correlation function ρ(l) =
Eu∗(i)u(i + l), ρ(0) = σ2

u. Over any path where σ2
u/ε is

a superlinear function of 1/M , on has

lim
σ2
u/ε→0

ε−1UiU
∗
i = 0 (a.s.). (10)

Proof: Multiplying (10) by M/M evaluated at the limit-
ing condition M →∞ gives

lim
(M,σ2

u/ε)→(+∞,0)

UiU
∗
i

M
Mε−1

The strong law of large numbers [19] guarantees that

lim
M→+∞

UiU
∗
i

M
=

 σ2
u · · · ρ(M − 1)
...

. . .
...

ρ(M − 1) · · · σ2
u

 (a.s.),

which makes (10) equal to

lim
(M,σ2

u/ε)→(+∞,0)

 σ2
u · · · ρ(M − 1)
...

. . .
...

ρ(M − 1) · · · σ2
u

Mε−1.

For the diagonal elements, choosing σ2
u/ε = f(1/M) yields

lim
(M,σ2

u/ε)→(+∞,0)
M
σ2
u

ε
= lim
M→+∞

f(1/M)

1/M
= lim
x→0+

f(x)

x
= 0

for any superlinear function f .
Moreover, it is a property of the correlation function that

|ρ(l)| < σ2
u, ∀ l 6= 0, i.e., the magnitude of the off-diagonal el-

ements of the covariance matrix is upper bounded by σ2
u [19].

Therefore, the above convergence condition applies not only
to the diagonal elements but to the whole matrix.

Applying Theorem 1 to (9) and rewriting the complete
recursions leads to

wi = wi−1 + µ′ U∗i ei,

which is indeed the TRUE-LMS algorithm from (5).

IV. THE INCREMENTAL DR-LMS

Although related to the APA, the TRUE-LMS is outper-
formed by the latter in most scenarios [3], [20]. Nonetheless,
the connection derived in Section III suggests the possibility
of improving the TRUE-LMS algorithm so that its adaptation
capabilities become comparable to those of the APA.

To this end, note that the underlying cost function of the
TRUE-LMS can be written as JTRUE(w) =

∑
k |ek(w)|2,

with ek(w) = d(i − k + 1) − ui−k+1 w. It is known from
distributed optimization theory that cost functions that can
be decomposed this way give rise to two gradient-based
minimization procedures [21]. On one hand, true gradient
methods evaluate all gradients ∇Jk(·) at a global estimate
w of the optimal solution. This is the approach taken in the
TRUE-LMS adaptation (see (5)) and it is the reason behind
its renaming from DR-LMS in this work. On the other hand,
incremental gradient techniques evaluate each ∇Jk(·) at a

intermediate estimate wk−1 obtained from the previous partial
cost function [22]. Observations advocate that incremental
strategies have faster convergence then true gradient ones when
far from the steady-state solution [21].

These arguments suggest an incremental counterpart of the
TRUE-LMS as a candidate comparable to the APA. From the
framework put forward in Section II-B, this transition can be
seen as a topological change in a combination of LMS filters
(see (7) and (8)). Another interpretation of this algorithm is as
a particular case of the distributed algorithm from [22] (INC-
LMS), where now all nodes statistics are the same. Indeed,
the incremental data reuse LMS (iDR-LMS) recursion is

w0,i = wi−1

wn,i = wn−1,i + µnu
∗
k[d(k)− ukwn−1,i]

wi = wN,i,
(11)

where n = 1, . . . , N and k = i − (n − 1) mod K. For the
special case where N = K, the algorithm introduced in a
different context in [4] is recovered. In this work, however,
the conceptual comparison to the APA motivates the use of
N > K in (11), so as to better exploit the data and improve
performance. This is accomplished by defining the index k,
which goes over the data set again once n exceeds the set’s
boundary (K).

The recursion (11) is composed of N LMS filters, making
its complexity O(NM). Hence, it requires less operations
than the classical APA (O(K2M) [16]) and even fast APA
implementations (e.g., O(3K2) + O(KM) [15]) for a large
range of N . As simulations show, the iDR-LMS matches
or outperforms the APA for N � K2, i.e., at a lower
computational cost.

Besides its complexity, another important feature of this
structure is that it inherits the well-known robustness and
stability properties of the LMS filters it is based on [23].
When contrasted to the known computational problems of
the APA in lower precision environments [24], the iDR-LMS
is expected to show even better performance in embedded
applications. Furthermore, note that in (11) the updates of
iDR-LMS are made in blocks, i.e., after going through all
components. Although this keeps the algorithm in the same
time scale as the APA, a different time scale could be obtained
by updating the overall coefficients wi for every new wn,i.

V. SIMULATIONS

This section starts by illustrating the relation derived in
Section III between the APA and the TRUE-LMS. Both
algorithms are used to identify an unknown system of length
M = 16 modeled as wo = col{1}/

√
M . Figure 3 shows the

result of changes in the regularization factor (ε) for K = 4,
µ′ = 0.05, µTRUE = µ′, µAPA = µ′ε, and u(i) and
v(i) are realizations of a zero-mean Gaussian i.i.d. RVs with
σ2
u = 1 and σ2

v = 10−3. Likewise, Figure 4 displays the
effect of vanishing inputs (σ2

u → 0) for K = 4, µTRUE =
µAPA = 0.3/σ2

u, ε = 0.1, and σ2
v = 10−6. The learning

curves (MSD(i) = E |wo − wi−1|2) were averaged over 100
independent runs. Note that µAPA and σ2

v were chosen for



clarity’s sake, so as to emphasize the relation between APA
and TRUE-LMS. Also, in Fig. 4 the step sizes were increased
as the variance decreased to keep the all curves in the same
time frame. Nonetheless, it is clear that as σ2

u/ε → 0, the
APA’s behavior approaches that of the TRUE-LMS.
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Figure 3. TRUE-LMS and APA for different ε
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Figure 4. TRUE-LMS and APA for different σ2
u

Next, the performance of the novel iDR-LMS is compared
to that of the APA under different system identification scenar-
ios. Figures 5, 6, and 7 present stationary environments where
M = 100, wo = col{1}/

√
M , µ0 = 0.05, µAPA = µ0,

µn = µ0/Mσ2
u and x and v, zero-mean Gaussian i.i.d.

sequences with variances σ2
x = 1 and σ2

v = 10−3. For the
white input experiments, u(i) = x(i), and for the correlated
input ones, u(i) = αu(i− 1)+

√
1− α2 x(i), with α = 0.95.

Figure 8, in addition to the colored input signal, simulates
a non-stationary system of length M = 60 modeled as
woi = woi−1 + q(i), where q(i) is a zero-mean i.i.d. Gaussian
RV with variance σ2

q = 10−6. In this case, µAPA = 0.1
and µn = 0.003. All learning curves are averages of 100
independent trials.

In every simulated scenarios, the iDR-LMS is able to match
or outperform the APA for some N relatively close to K,
keeping its complexity lower than classical and fast APAs [15],
[16]. Finally, Fig. 5 and 6 reveal a trade off between steady
state error and convergence speed imposed by the number of
components (N ) that bears significant similarity to the known
compromise for step sizes in single AFs [16].
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Figure 5. APA and iDR-LMS for white signals and K = 10
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Figure 6. APA and iDR-LMS for white signals and K = 20
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Figure 7. APA and iDR-LMS for correlated inputs, K = 10, and N = 20

VI. CONCLUSION

A new DR algorithm based on the incremental combina-
tion of LMS filters was introduced by putting forward new
definitions of combinations that include DR strategies. After
illustrating the relation between combinations of AFs and DR
algorithms, the TRUE-LMS was proven to be a limiting case of
the APA. The iDR-LMS was then introduced as an incremental
counterpart of its recursion. Simulations showed that the new
algorithm can match and even outperform the APA with
lower complexity. Future works include performance analysis,
inspired by adaptive networks [22], and solutions to reduce
the steady state/convergence rate trade off.
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